
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Learning Raw Image Reconstruction-Aware
Deep Image Compressors

Abhijith Punnappurath and Michael S. Brown, Member, IEEE

Abstract—Deep learning-based image compressors are actively being explored in an effort to supersede conventional image
compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image
fidelity errors in the nonlinear standard RGB (sRGB) color space. However, for many computer vision tasks, the sensor’s linear
raw-RGB image is desirable. Recent work has shown that the original raw-RGB image can be reconstructed using only small amounts
of metadata embedded inside the JPEG image [1]. However, [1] relied on the conventional JPEG encoding that is unaware of the
raw-RGB reconstruction task. In this paper, we examine the ability of deep image compressors to be “aware” of the additional objective
of raw reconstruction. Towards this goal, we describe a general framework that enables deep networks targeting image compression to
jointly consider both image fidelity errors and raw reconstruction errors. We describe this approach in two scenarios: (1) the network is
trained from scratch using our proposed joint loss, and (2) a network originally trained only for sRGB fidelity loss is later fine-tuned to
incorporate our raw reconstruction loss. When compared to sRGB fidelity-only compression, our combined loss leads to appreciable
improvements in PSNR of the raw reconstruction with only minor impact on sRGB fidelity as measured by MS-SSIM.

Index Terms—image compression, radiometric calibration, raw image reconstruction, deep learning-based image compression

F

1 INTRODUCTION AND MOTIVATION

CAMERA images are compressed and saved in the highly
processed standard RGB (sRGB) color space. The cam-

era sensor itself, captures images in an unprocessed raw-
RGB format that is linear with respect to sensor irradiance.
Raw-RGB images are converted onboard the camera to
sRGB through a number of steps, many nonlinear in nature,
in order to improve the perceptual and aesthetic quality of
the image. Many computer vision tasks (e.g., deblurring,
photometric stereo, color constancy) work best in the linear
raw-RGB format. While modern cameras allow images to
be saved in unprocessed linear-raw format, most casual
photographers do not shoot in raw because of prohibitive
file sizes and storage requirements. In the absence of the
raw file, radiometric calibration methods are usually re-
quired to convert sRGB values back to either linear values
proportional to scene radiance or, in the case of more re-
cent raw reconstruction techniques, the original raw values
(e.g., [2], [3], [4], [5], [6], [7], [8]). Recent work by Nguyen
and Brown [1] showed how to embed small amounts of
metadata (e.g., only 64 KBs), computed from an sRGB-raw
pair, inside the compressed JPEG sRGB image to allow the
raw image to be reconstructed. Although their technique
reduces the storage demands for obtaining raw information,
in this scenario, JPEG encoding is assumed, and applied
independently of the raw reconstruction objective. There
is no opportunity to make the compressor aware of the
additional goal of raw reconstruction.

While conventional schemes, such as JPEG compres-
sion [9], have long been the dominant choice for lossy
image compression, there has been a renewed interest in
developing the next generation of compression methods

• A. Punnappurath and M. S. Brown are with the Department of Electrical
Engineering and Computer Science, York University, Toronto, Canada.
E-mail: pabhijith@eecs.yorku.ca, mbrown@eecs.yorku.ca

based on deep neural networks [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19]. This recent focus on developing a new
class of image compressors based on neural networks offers
the opportunity to “learn” image compression that targets
not only perceptual fidelity but also the image’s utility for
computer vision algorithms. Towards this goal, we advocate
a raw reconstruction loss that can be integrated into existing
deep learning frameworks for image compression such that
the compressor is also aware of the target of reconstructing
the raw image.

To this end, we show that the mapping function esti-
mated for a given sRGB-raw pair by the method of Nguyen
and Brown [1] can be accurately represented by a 16×16×16
3D lookup table (LUT). The implications of this finding
are three-fold. First, the mapping function from sRGB to
raw, though difficult to analytically define and differentiate,
is piecewise smooth since the raw reconstruction quality
is well preserved even when reducing from a full-sized
256×256×256 LUT (as required by an sRGB to raw color
space mapping) to a 16×16×16 LUT. As a result, the deriva-
tives of the local interpolating functions encoded within the
LUTs can provide meaningful gradients for backpropaga-
tion. Secondly, a reduced 16×16×16 LUT imposes minimal
burdens on storage and memory during training. Further-
more, these LUTs can be computed offline and stored before
the training step. Lastly, lookup operations are fast, and,
in our experiments, the inclusion of our raw reconstruction
loss adds only an additional 25% overhead to the training
time of the compression network.

We select the state-of-the-art network architecture of
Toderici et al. [19] to demonstrate how our raw reconstruc-
tion loss can be incorporated into a deep image compression
neural network. An overview of our proposed scheme is
shown in Fig. 1. During training, we assume that the raw
image corresponding to the sRGB input is available. We

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

64
256

3

512
512

32
32

512
512

512
256

128
3

Bi-level code (-1/1)

Network architecture of Toderici et al. 2017 [19]

Fidelity loss
Φ(𝑥𝑥, �𝑥𝑥)

Raw reconstruction loss
Φ𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 , �𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟)𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

𝑥𝑥 �𝑥𝑥

�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

16×16 ×16 LUT

RG

B

sRGB input image

Raw input image

Compressed sRGB output

Reconstructed raw
image

3x3 feed forward conv. 3x3 I/P - 1x1 hidden assoc. LSTM conv.

3/13/0

1/0 3/3

1x1 feed forward conv. 3x3 I/P - 1x1 hidden assoc. LSTM conv.

Raw reconstruction
data

sRGB/raw pair

fid
el

ity
 lo

ss
ra

w
 lo

ss

Fig. 1. An overview of our proposed scheme. The full-resolution image compression neural network of Toderici et al. [19], which is our architecture
of choice to demonstrate the utility of our raw reconstruction loss, computes the sRGB fidelity loss between the input sRGB image and their
compressed sRGB output. We first reconstruct the raw image from the sRGB output of their network via a lookup table, then compute our raw
reconstruction loss between this estimated raw image and the input raw image, and append this raw loss to the existing fidelity loss. The path in
green represents our contribution. (The illustration of the network architecture of [19] is modelled after the depiction of their network in [14].)

provide the uncompressed sRGB image as input, and apply
the lookup operation on the estimated sRGB output of
the network to recover its raw reconstruction. Our raw
reconstruction loss calculated between the input raw image
and our estimated raw image is added to the existing sRGB
fidelity loss, and the combined error is backpropagated
through the network. Note that raw images are required
as input only during training.
Contribution This paper describes how to model raw image
reconstruction into a neural network-based loss function
such that any existing deep image compressor can be made
aware of the additional objective of raw reconstruction. As
part of this effort, we describe how to encode the metadata
for reconstructing the raw image into a lookup table that
can be differentiated locally to facilitate back propagation.
We then show that this raw reconstruction LUT can be
incorporated into a joint loss function that considers both
image fidelity and the raw reconstruction. No changes to
the underlying network architecture are needed since our
proposed framework only needs to modify the loss func-
tion. We demonstrate the effectiveness of our approach on
networks trained from scratch using the joint loss function,
and networks trained only for image compression with a
fidelity loss and then fine-tuned on the joint loss. Our results
show that when compared to compression using only sRGB
fidelity loss, we can obtain significant improvement in AUC
(area under the rate-distortion curve) for the raw PSNR
(peak signal-to-noise ratio) while incurring only modest
losses in perceptual fidelity as measured by the AUC for
MS-SSIM (multi-scale structural similarity) [20] metric.

We would like to highlight that achieving better com-
pression than state-of-the-art image compression techniques
is not the objective of our work. Due to the very nature
by which our raw loss is appended to the existing loss
(see Fig. 1), the compression rate achieved by our proposed
method is limited by the compression rate of the chosen base
architecture, which in the present case is [19]. The work in
[19] is selected as a proof-of-concept of our proposed scheme
because [19] was one of the first works to demonstrate high

compression rates over variable bit rates on full-resolution
images. We are aware that the architecture in [19] does not
beat JPEG2000 [21], WebP [22], or BPG [23], and that other
deep learning methods have recently appeared. We are also
aware that recent work by [24] and [16] is able to outdo
BPG, the top-performing conventional image compression
algorithm. However, [24] and [16] have not released their
code online at the time of submitting this work.

Our objective is to enable learning-based compressors
to incorporate the goal of raw image reconstruction into
their training procedure, and thereby endow them with the
ability to perform better raw reconstruction. Current deep
architectures perform compression in the perceptual sRGB
space and produce a compressed sRGB image as output
from an uncompressed sRGB input. To keep in line with
this existing framework and provide a “plug and play”
functionality, we use our LUT-based approach to map from
the sRGB output of the network back to raw instead of
compressing directly in the raw space or attempting direct
raw recovery from sRGB by having the network try to learn
this transformation. As such, our proposed loss function is
generic and can be plugged into the current best-performing
deep compressor, or future algorithms too for that matter.

2 RELATED WORK

In this section, we review two areas of prior work: (1)
raw reconstruction, and (2) image compression using deep
neural networks.
Raw reconstruction Raw reconstruction is highly related
to early work on radiometric calibration. Radiometric cali-
bration methods (e.g., [3], [4], [7]) were designed to undo
the non-linear processing applied onboard cameras to pro-
duce the final sRGB output. Radiometric calibration was
developed before cameras allowed consumers access to
the unprocessed raw-RGB data. As a result, radiometric
calibration strived to linearize the sRGB data. As cameras
started to allow capture in raw RGB, the goal shifted from
linearizing the sRGB data to fully recovering the original

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Tone Map Gamut mapping
via scatter point interpolationWhite-balance Color space transform

0 0
0 # 0
0 0 #

#
#
#

Full
256 × 256 × 256 LUT

Locally differentiable
16 × 16 × 16 LUT

= ≈
Raw image reconstruction model used by Nguyen and Brown [1]

ra
w

 v
al

ue
s

sRGB values

Our adaptation for backpropagation

RG

B

RG

B

Fig. 2. An overview of the various stages in the framework of Nguyen and Brown [1]. Their method is equal to a full 256×256×256 lookup operation,
which we approximate by a locally differentiable 16×16×16 lookup table for the purpose of backpropagation.

raw-RGB values (usually up to a quantization factor). Most
notable in these methods was work by Chakrabarti et al.
[2], [25], and Kim et al. [5] that introduced more complex
onboard camera processing models in order to reconstruct
the raw RGB. Similar work by Yuan and Sun [26] proposed
a raw-RGB reconstruction method based on up-sampling
using a low-resolution raw image stored along with the
sRGB image to recover the full-resolution raw image. These
aforementioned raw reconstruction methods require either
careful camera calibration [2], [5], [25] or a small raw file to
be stored along with the sRGB image [26]. Recent work by
Nguyen and Brown [1] showed how the metadata to allow
raw reconstruction could be computed directly (without the
need for camera calibration) from an sRGB-raw image pair
and could be embedded within a JPEG image using only
64KB of data. This method provided a practical solution to
allow raw reconstruction from a self-contained JPEG image.
Deep learning-based image compression Image compres-
sion using deep neural networks has been attracting con-
siderable attention recently from both the image processing
and machine learning communities [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [24]. The two most commonly
used architectures are auto-encoders [10], [11], [15], [16],
[17], [24] and recurrent neural networks [13], [14], [18], [19].
The general strategy employed is to introduce a bitrate
bottleneck layer, usually in the form of an autoencoder,
in the encoder-decoder image compression pipeline. The
networks are trained by minimizing a loss function that
penalizes the difference between the original sRGB image
and its reconstruction. The loss function is usually the
mean-squared error between the original image and the
compressed output image [10], [11], [15], [17], or is based
on perceptual metrics, such as MS-SSIM [14], [16], [24].

The architectures of [17] and [11] are representative ex-
amples of the autoencoder category. They support multiple
bitrates and employ a cascade of autoencoders. The output
of the encoder is quantized, and while [17] adopts a smooth
approximation of the derivative of the non-differentiable
quantization function, [11] substitutes it with a continuous
relaxation by adding uniform noise. [16] also employs an
autoencoder architecture and explores the possibility of us-
ing adversarial training within a compression setting. In the
recurrent neural network (RNN) framework, the model gen-
erates a progressive encoding that grows with the number
of recurrent iterations. Depending on the target bitrate, only
a subset of the progressive code is transmitted and multiple
bitrates are achieved. At the decoder, the missing codes are
either sampled from the learned distribution [13] or ignored
[19]. Unlike [17] and [11], the methods of [14], [19] binarize
the output of the encoder rather than quantizing it.

As discussed in Section 1, the work in this paper is
inspired by Nguyen and Brown [1], where the information
required to reconstruct the raw image is embedded inside
a compressed JPEG image. However, unlike [1], where
the raw image reconstruction and JPEG compression were
applied independently, this paper explores the opportunity
to modify a neural network-based compressor’s objective to
be aware of the raw reconstruction. This requires careful
consideration as to how the sRGB-raw mapping can be
modelled such that it can be differentiated in an appropriate
manner to allow for backpropagation.

3 RAW IMAGE RECONSTRUCTION AS A LOOKUP
OPERATION

The raw image reconstruction procedure of Nguyen and
Brown [1] calculates the necessary parameters to reconstruct
the original raw image (up to a quantization factor) from
the corresponding sRGB image given an sRGB-raw image
pair. More specifically, the parameters modelled are a white-
balance matrix, a color correction matrix, a tone map op-
erator that is applied to all color channels, and a gamut
mapping that maps a 3D color value to a new 3D color
value. Fig. 2 shows an illustration of these steps that reflects
the typical processes that a raw image undergoes onboard
a camera to produce the sRGB image. As with all other
radiometric calibration/raw reconstruction techniques in
the literature, the method of [1] does not explicitly model the
compression and assumes the sRGB image used to estimate
the mapping parameters is high-quality.

Based on the given sRGB-raw image pair, the work in
[1] essentially computes a distinct mapping from the sRGB
color space to the raw color space. Therefore, for a particular
pixel value in the sRGB space, there exists a corresponding
pixel intensity in the raw space which is fixed for that sRGB-
raw pair. An implication of this is that it is possible to build
a 3D lookup table that encodes this mapping from sRGB to
the raw color space. Each axis of the 3D lattice represents
one of the three color channels and an input sRGB pixel
value defines a point inside the lattice. The output raw pixel
values stored in the 3D LUT can thus be indexed by the
input sRGB pixel intensities. We note that use of a 3D LUT
for raw reconstruction has been demonstrated by Lin et
al. [27]. However, they did not consider issues such as the
degree of the interpolation function used in the LUT and its
implication for differentiation, which is critical to our goal
of using it as part of a deep learning-based loss function.

A full 3D LUT for an input sRGB image spanning the
0-255 intensity range requires 2563×3 color channels ≈ 48
million parameters. If each entry is stored as type float32,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

then the LUT size will be approximately 190 MB. This is
highly inefficient in terms of storage and memory usage. A
common alternative is to use a smaller LUT, and if an input
value is not a lattice point, the result of the lookup operation
is computed by interpolating the nearby lattice values.

To examine how raw reconstruction accuracy is affected
by the size of the LUT and the degree of the local in-
terpolation function, we applied the algorithm of Nguyen
and Brown [1] on 100 randomly selected sRGB-raw image
pairs from the NUS dataset [28], [29] and then used the
parameters estimated by their method to build, for each pair,
LUTs of various sizes and different degrees of interpolating
polynomials. We tested tables of sizes 64, 32, 16, and 8, with
interpolating polynomials whose variables in each term
have degree 1, 2, and 3. We then computed the root mean
squared error (RMSE) between the ground truth raw images
from the NUS dataset and the raw images reconstructed
using the LUTs. From our experiments, we found that even
a LUT of size 16×16×16 using a first-degree interpolating
function produces an accurate raw reconstruction. This sug-
gests that the sRGB-raw mapping function, although hard
to analytically express and differentiate due to the various
operations involved, is piecewise smooth. Therefore, mean-
ingful gradients can be obtained by differentiating the local
interpolating functions encoded within the LUT, and these
can be backpropagated while training the network.

The coefficients of the derivatives of the interpolat-
ing functions themselves, just as the other entries of the
table, can be pre-computed and stored within the LUT
rendering both the raw reconstruction and the calcula-
tion of the derivative during backpropagation as fast and
efficient lookup operations. For example, a LUT of size
16×16×16 with a first-degree interpolating function requires
163×(8×3+4×3) ≈ 0.14 million parameters, where 3 repre-
sents the number of color channels, and 8 and 4 denote the
number of coefficients of the interpolating function and the
number of coefficients of the derivative of the interpolating
function, per color channel. If each value is saved as type
float32, then the LUT will be around half an MB in size.
For all our experiments in Section 5, we used LUTs of size
16×16×16 with a first-degree interpolating function as they
offered the best compromise between raw reconstruction
accuracy, training time, and memory requirements.

A LUT generated using the approach of [1] is specific
to that sRGB-raw pair. This means that at training time, the
raw data corresponding to each sRGB image must be avail-
able. While it is possible to construct generic camera-specific
LUTs, this process requires careful camera calibration [5].
The technique of [1] has the advantage that it requires no
knowledge of the camera parameters, and thus we select
their method to provide a simple calibration-free pipeline.

4 RAW RECONSTRUCTION LOSS FOR NEURAL
NETWORK-BASED IMAGE COMPRESSION

As discussed in Section 1, we select the state-of-the-art
image compression network of Toderici et al. [19] to demon-
strate the utility of our proposed raw reconstruction loss.
The architecture of Toderici et al. [19] is built on an RNN-
based encoder and decoder, and a binarizer. At each re-
current iteration, the RNN encoder encodes the residual

between the previous reconstruction of the sRGB image and
the original uncompressed sRGB image. New information
from the current residual is extracted and combined with the
context stored in the hidden states of the recurrent layers at
each step. The model thus generates a progressive encoding
that grows with the number of recurrent iterations. The
number of iterations that the decoder runs is determined
by the number of recurrent iterations. Variable bitrates
are thereby achieved – the decoder runs fewer iterations
for lower bitrate encodings and generates a poorer-quality
reconstruction as compared to higher bitrate encodings.

Within the same architecture, Toderici et al. [19] examine
three different RNN types (LSTM, associative LSTM, and
a hybrid of GRU and ResNet) and three different recon-
struction methods (one-shot, additive, and residual scaling).
For our experiments, we choose the associative LSTM as
our recurrent unit variant, and the additive reconstruction
framework to plug in our raw reconstruction loss. We would
like to point out that this choice is arbitrary, and our pro-
posed scheme is equally applicable to any of the models
described in their paper.

We briefly review the recurrent model of Toderici et
al. [19] before proceeding to an explanation of how our
raw reconstruction loss can be incorporated within their
framework. Following Toderici et al. [19], a single iteration
of their network can be expressed as:

bt = B(Et(x− x̂t−1)), x̂t = Dt(bt) + x̂t−1, x̂0 = 0, (1)

where E, B, and D represent the encoder, binarizer, and
decoder, respectively. The parameter t denotes the recurrent
iteration, and bt and x̂t are the progressive binary repre-
sentation and the progressive reconstruction, respectively,
of the original image x.

See Fig. 1 for the network architecture of Toderici et
al. [19]. The input is an sRGB patch of size 32×32×3 pixels,
which is reduced to a 2×2×32 binarized representation at
each recurrent iteration under the action of the binarizer.
As a result, each iteration represents 1

8 bit per pixel (bpp).
The batch size is set to 32 and the number of RNN unroll
iterations is selected as 16.

4.1 Loss function
Toderici et al. [19] impose an L1 loss on the residuals
generated at each iteration as

Φt(x, x̂t) = |x− x̂t|. (2)

To this existing fidelity loss in the sRGB space, we
append our raw reconstruction loss as:

Φtraw(xraw, x̂traw) = |xraw − x̂traw |, (3)

where xraw is the ground truth raw image. Note that we
estimate the raw reconstruction x̂traw at every recurrent
iteration i.e., x̂traw(= Ψ(x̂t)) is obtained by applying the
lookup operation (described in Section 3) on the sRBG
reconstruction x̂t produced by the network at iteration t.
The total loss for the network during training is

β

(∑
t

Φt(x, x̂t) + λ
∑
t

Φtraw(xraw, x̂traw)

)
, (4)

where β, λ are positive scalars, and λ controls the contribu-
tion of our raw reconstruction loss to the total loss.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

5 EXPERIMENTS

We validate the utility of our proposed approach on DSLRs
as well as mobile phone images. For our experiments on
DSLR data, we use the NUS dataset [28], [29], which con-
tains raw images captured using several different DSLR
cameras with approximately 200 to 350 images per camera.
To evaluate our method on mobile phone data, we use the
dataset of [30] comprising raw files acquired using smart
phones with 100 images per camera.

5.1 Training setup
Since the raw-RGB color space is camera-specific, we train
our models separately for each camera. For our first ex-
periment, we choose the Samsung NX2000 DSLR camera
from the NUS dataset, which has 307 images. We split these
images randomly into training (60%), validation (20%), and
test (20%) sets. To obtain the sRGB images from the raw
files, we use the platform of Karaimer and Brown [31].
Their framework takes the raw image as input, and offers
the flexibility to pause the camera pipeline before the JPEG
compression stage and save the uncompressed sRGB out-
put. Using this platform, we also obtain the demosaiced raw
image before the white-balancing and color manipulation
stages. This demosaiced unprocessed raw image serves as
ground truth for both training and evaluating our models.

We downsize by a factor of 4 all the sRGB-raw pairs
thus obtained to roughly match the image resolution used
by [19]1. Next, we use the raw image reconstruction param-
eters estimated by the method of Nguyen and Brown [1] to
build lookup tables for all pairs in the training set. We then
decompose the sRGB training images into non-overlapping
32× 32 patches, and use for training 640 patches from
each image that have the worst compression ratio when
using the PNG compression algorithm. This is based on the
observation by the authors of [19] that training on patches
that are hard to compress yields a better compression model.

Corresponding patches from the raw images are also
cropped and stored for computation of our raw reconstruc-
tion loss during training. Although the number of patches
required for training is very high, the number of training
images from which these patches are extracted is only of the
order of a few hundred, and hence, the number of LUTs to
be built and saved, before training, is not prohibitive.

Only the pre-trained TensorFlow model for the network
architecture of Toderici at al. [19] is publicly available.
Neither training data nor the code for training has
been released by the authors. Therefore, we used a re-
implementation of their network architecture in PyTorch,
and appended our raw reconstruction loss to their
framework to train all our own models described in the
paper. All networks were trained using the Adam [32]
optimizer. The learning rate was set to 5× 10−4, and we
used a fixed value of λ = 5 for all our experiments. We
experimented with β values of 1

10 , 1
25 , 1

50 , 1
100 , and 1

200 . For
the Samsung NX2000, a β value of 1

50 was selected. The
training is performed from scratch on an nVidia Titan X
GPU with 12 GB of memory. The training time per batch for

1. The dataset of Toderici et al. [19] contains images of size 1280×720
pixels. The images from Samsung NX2000 after downsizing by 4 are of
size 1344×896 pixels.

Fig. 3. Rate distortion curves on test images from Samsung NX2000
given as PSNR raw on the left, and MS-SSIM sRGB on the right, versus
bpp.

the original architecture of [19] with only the fidelity loss
is approximately 0.7 seconds. With our raw loss added, the
training time increases by approximately 0.2 seconds. All
our trained models and associated data used in this paper
will be made publicly available.

5.2 Comparisons and evaluation metrics

To evaluate our trained model, we use the sRGB images
from the test set. Note that raw images have to be provided
to our network only during training. At test time, just as
with other compression networks, including Toderici et al.
[19], only the sRGB image needs to be input to our network.

We compare our results with the pre-trained TensorFlow
model for the Residual GRU architecture made publicly
available by the authors of [19]. Since we do not perform
entropy coding on our results (as this is not the objective of
our work), we also skip the entropy coding step described
in [19] to allow for a fair comparison. Note that both models,
ours and [19], would benefit by approximately the same
amount if an entropy coding scheme is applied, and thereby
our experimental findings remain unaffected even if this
step is skipped. Of the various architectures described in
their paper, only the pre-trained Residual GRU model has
been released by the authors, and this according to their
paper is one of their best-performing models. Following
[19], we also include a baseline comparison against JPEG.

To examine the improvement in raw reconstruction us-
ing our approach, we first pre-compute the raw reconstruc-
tion parameters corresponding to each sRGB-raw image
pair in the test set using the algorithm of [1]. Following
[1], we assume that this 64 KB metadata is available to
all methods (ours, [19], and JPEG) at test time. On the
compressed sRGB output of our network, we apply the raw
recovery technique of [1] using this metadata to obtain our
raw reconstruction. Likewise, we use the same metadata
to recover the corresponding raw reconstructions from the
sRGB output of [19], as well as JPEG. We then compute the
PSNR between the ground truth raw image and the raw
reconstruction obtained using each of the three approaches.

It is worth noting that while it is possible to objectively
assess raw reconstruction accuracy using PSNR, the same is
not true of sRGB images [19] since the human visual system
is more sensitive to certain types of distortions than others,
a fact that JPEG also exploits. Therefore, following other
recent works [11], [14], [16], [19], [24], we use MS-SSIM [20],
which is a commonly employed perceptual full-reference
image metric for comparing lossy image compression algo-
rithms, for quantitative evaluation of our sRGB outputs.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Samsung NX2000 at 0.25 bpp

GT raw JPEG + [1] [19] + [1] Ours + [1]

JPEG + [1] [19] + [1] Ours + [1]Error maps

Original sRGB JPEG [19] Ours

0.12

0

Fig. 4. Qualitative results of our method, along with comparisons. The ground truth (GT) raw image, and the raw reconstructions obtained by
applying the raw image reconstruction technique of Nguyen and Brown [1] (with the same 64 KB raw reconstruction metadata) on JPEG, the output
of Toderici et al. [19], and our output, respectively, are shown in the first row. The root squared error maps (with GT raw as reference) of the raw
reconstructions in row one are presented in the second row. The third row shows the original sRGB, JPEG, output of [19], and our output. Zoomed-in
regions are also displayed for comparison. Note that a gamma has been applied on the raw images for better visualization.

TABLE 1
Performance on various cameras measured as area under the curve (AUC) for the specified metric, up to 2 bits per pixel.

Camera Samsung NX2000 Canon 1Ds Mark III Olympus E-PL6 Google Pixel
Metric AUC PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

raw (dB) sRGB raw (dB) sRGB raw (dB) sRGB raw (dB) sRGB
JPEG 420 75.83 1.7670 84.22 1.7823 83.52 1.7670 70.79 1.7119

Toderici et al. [19] 74.06 1.7876 82.12 1.8022 81.63 1.7896 70.66 1.7274
Ours with both losses 78.30 1.8027 85.98 1.8229 85.78 1.8083 72.02 1.7365

Ours with only fidelity loss 75.93 1.8102 84.28 1.8264 83.65 1.8138 71.01 1.7528

Both metrics – PSNR raw and MS-SSIM sRGB – are
calculated over the reconstructed images after each iteration
for both our own results and that of [19]. The results are
presented in the plot of Fig. 3. Qualitative evaluations are
also provided in Fig. 4, and it can be seen that our raw
reconstruction has fewer errors, and our sRGB output is
visually superior to both [19] and JPEG.

To rank the results, we use the same score reporting pro-
cedure as in [19] – we use an aggregate measure computed
as the area under the rate-distortion curve as a single scalar-
valued measure of performance. The AUC values of our
model trained using both losses and those of [19] and JPEG
are presented in Table 1. It can be observed from the results
that JPEG produces a higher PSNR raw AUC than [19], but
its MS-SSIM AUC scores are lower than [19]. Our model out-
performs both competitors on both metrics. As mentioned
in Section 1, since the work of [19], other methods have been
published that outperform [19]. However, our objective is in
determining the improvement in raw image reconstruction
due to our joint loss given a particular network architecture,
and as a result, we compare our results only with [19].

5.3 Effect of our raw reconstruction loss
In the previous experiment, the training and testing were
specific to a camera – that is, the patches used for train-

ing and the images used for testing came from the same
camera. It is natural to consider whether the improvement
in reconstruction quality over the generic model of [19] is
simply the result of the sRGB fidelity term in our joint loss
being better constrained. To ascertain the contribution of our
raw reconstruction loss in improving the raw reconstruction
quality, we perform the following experiment. We turn off
our raw reconstruction loss by setting λ = 0 in equation (4),
and train from scratch using only the sRGB fidelity loss.
We use the same Samsung NX2000 training patches and
train for the same number of epochs as before. The PSNR
raw and MS-SSIM sRGB AUCs obtained using our model
trained with only the fidelity loss are provided in Table 1.
It can be observed that while the MS-SSIM performance of
our two models is nearly the same, our PSNR raw values
improve substantially when trained using both losses – the
PSNR raw AUC increases from 75.93 to 78.30. This clearly
demonstrates the effectiveness of our raw reconstruction
loss in improving the raw reconstruction quality. The MS-
SSIM AUC of our model trained with just the fidelity loss at
1.8102 is only slightly greater than the 1.8027 AUC produced
by our network trained using both losses.

We repeat the same experiments on the Canon 1Ds Mark
III and the Olympus E-PL6 DSLRs from the NUS dataset.
We train two separate models from scratch – the first with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Metric AUC MS-SSIM sRGB

Samsung NX2000 1.8171

Canon 1Ds Mark III 1.8174

Olympus E-PL6 1.8157

Toderici et al. 2017 1.8120

JPEG 420 1.7990

Fig. 5. Left: rate distortion curves on the Kodak dataset [33] given as
MS-SSIM, versus bpp. Right: AUC up to 2 bpp for the MS-SSIM plot.

our joint loss, and the second using only the fidelity loss.
The corresponding AUC values are given in Table 1. Our
joint loss model yet again outperforms by a notable margin
our fidelity-only model in terms of PSNR raw. The drop in
MS-SSIM is negligibly small, as can be seen from the results.

5.4 Generalizability
In all our experiments so far, the training and test images
were drawn from the same dataset and the images are
similar in terms of scene content. To determine the gener-
alizability of our models trained using both losses, we test
on the Kodak Photo CD dataset [33] that the authors of [19]
have used to report their scores on. We would like to note
that this dataset has also been used by other recent image
compression works, such as [12], [14], [15], [16], [17], [24]
for score reporting. Since the ground truth raw images are
unavailable in this case, we report only the MS-SSIM values
on the sRGB images. See the plot of Fig. 5. The AUC values
are also provided alongside the plot. It can be observed that
our models trained from scratch using both losses perform
on par and even surpass [19], even though our training data
did not contain images from a Kodak camera.

5.5 Mobile phone data
The NUS dataset contains only images captured using
DSLRs. For our next experiment, we use the recent dataset
of [30] that contains raw images captured using mobile
phones. To test our framework on mobile data, we used
the 100 raw images from this dataset captured using the
Google Pixel mobile phone camera. Since the amount of
training data is smaller in this case, we use a split of 80%
training, 10% validation, and 10% test. We train two models
once again from scratch (using our joint loss and only the
fidelity loss). Mobile phone images tend to be noisier and of
a poorer quality than DSLRs, and we do notice a drop in per-
formance of our method as well as competing techniques.
However, as seen from the AUC values in Table 1, our
models still outperform [19] and JPEG on both metrics. Our
joint loss network again scores favourably over the fidelity-
only model with regard to PSNR raw, while providing
competitive performance in terms of sRGB fidelity.

5.6 Fine-tuning
Since the raw-RGB color space is camera-dependent, our
models have to be trained separately for each camera. In
practice, sufficient training data may not be available to
train the model from scratch, or it may be desirable to
use an existing trained compression network in our raw
reconstruction scenario. To address this issue, we advocate

TABLE 2
Performance comparison of our
fine-tuned models versus our
models trained from scratch.

Metric PSNR MS-SSIM
AUC raw (dB) sRGB

Camera Samsung NX2000
Fine-tuned 77.63 1.8071

From scratch 78.30 1.8027
Camera Canon 1Ds Mark III

Fine-tuned 85.69 1.8240
From scratch 85.98 1.8229

Camera Olympus E-PL6
Fine-tuned 85.02 1.8115

From scratch 85.78 1.8083

TABLE 3
Peformance on Sony A57.

Metric PSNR MS-SSIM
AUC raw (dB) sRGB

JPEG 420 83.00 1.7677
[19] 81.73 1.7889

Mixed model 83.89 1.8120
Fine-tuned 85.13 1.8101

From scratch 85.53 1.8029

a fine-tuning strategy where we first train a generic model
with only the sRGB fidelity loss, using training patches from
different cameras, and then fine-tune this model for the test
camera. For this experiment, we pool an equal number of
patches from Samsung NX2000, Canon 1Ds Mark III, Olym-
pus E-PL6, and Nikon D5200 from the NUS dataset [28],
[29]. The total number of patches is selected to be equal
to the number of patches used for training each individual
camera model from scratch in our earlier experiments in
Section 5.1. We now train the network using this mixed
set of patches with only the sRGB fidelity loss. Next, we
fine-tune this model using patches from Samsung NX2000,
which we select as our test camera. For fine-tuning, we use
only about 30,000 training patches. We apply this fine-tuned
model on the same test images from Samsung NX2000 as
in Section 5.2, and compute the rate distortion curves. The
corresponding PSNR raw and MS-SSIM sRGB AUC values
are provided in Table 2. The AUC values from Table 1 on the
same test images obtained using our original model trained
from scratch using both losses are reproduced in Table 2 for
ease of comparison. It can be seen that our fine-tuned model
performs almost on par with the model trained from scratch
in terms of PSNR raw. We performed fine-tuning on Canon
1Ds Mark III and Olympus E-PL6 as well and observed
similar trends. The AUC values are provided in Table 2.
We do note that the MS-SSIM sRGB AUC values of our fine-
tuned networks are slightly higher than our corresponding
models trained from scratch. This is because the fine-tuning
is done on a network that has originally been trained to
maximize sRGB fidelity. We do not run the fine-tuning
experiment on mobile phone images because, as mentioned
in Section 5.5, there are currently no large publicly available
datasets with a sizeable number of raw images from mobile
phones sufficient to train a representative mixed model.

To examine the efficacy of our fine-tuning framework
in cases where the test camera does not belong to the
mixed training set, we select a new camera, the Sony A57,

Fig. 6. Rate distortion curves on test images from Sony A57 given as
PSNR raw on the left, and MS-SSIM sRGB on the right, versus bpp.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

from the NUS dataset [28], [29]. We randomly divide the
images into training, validation, and test sets. Next, we
fine-tune our earlier mixed model, which did not include
Sony, using patches extracted from the training images. The
improvement in raw reconstruction accuracy over the mixed
model as a result of fine-tuning is evident from the plots of
Fig. 6 and the AUC values in Table 3. For comparison, we
trained an independent model from scratch for the Sony A57
using both losses. It can be seen from the results that our
fine-tuned model with a PSNR raw AUC of 85.13 performs
almost on par with our network trained from scratch, which
has a corresponding AUC value of 85.53.

For all our fine-tuning experiments, a fixed β value of
1
50 was used. For our models trained from scratch, β was
selected as 1

25 for Canon 1Ds Mark III, 1
50 for Olympus E-

PL6 and Google Pixel, and 1
100 for Sony A57. The rate dis-

tortion curves corresponding to the experiments on Canon
1Ds Mark III and Olympus E-PL6 in Section 5.3, and Google
Pixel in Section 5.5 are provided in the appendix.

6 SUMMARY

This paper has demonstrated how the loss used to train neu-
ral network-based compression architectures can be modi-
fied to consider both the sRGB image fidelity errors and
raw reconstruction errors. Our proposed approach needs
only to modify the loss function and requires no changes to
the underlying network architecture. As part of this work,
we analysed how the sRGB-raw mapping can be modelled
as 3D LUTs that are locally differentiable. Our method
was applied within two training contexts: (1) training from
scratch using the joint loss, and (2) fine-tuning a network
trained only on sRGB fidelity loss to also consider the joint
loss. In both scenarios, we demonstrated improvements in
the raw image reconstruction with modest impact on the
sRGB image fidelity. The high-level goal of this paper is
to encourage researchers developing the next generation
of neural network-based image compression algorithms to
consider expanding the utility of the compressed images be-
yond a photo-centric usage only (i.e., sRGB). To this end, we
hope to influence the development of compression schemes
and associated encoding formats that are mindful of low-
level computer vision tasks that require the camera to serve
as a scientific instrument that provides RGB values that are
linearly related to the scene’s real radiometric properties.

ACKNOWLEDGMENT

This study was funded in part by the Canada First Research
Excellence Fund for the Vision: Science to Applications
(VISTA) programme and an NSERC Discovery Grant.

REFERENCES

[1] R. M. H. Nguyen and M. S. Brown, “Raw image reconstruction
using a self-contained srgb-jpeg image with only 64 KB overhead,”
in CVPR, 2016.

[2] A. Chakrabarti, Y. Xiong, B. Sun, T. Darrell, D. Scharstein, T. Zick-
ler, and K. Saenko, “Modeling radiometric uncertainty for vision
with tone-mapped color images,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 36, no. 11, pp. 2185–2198, 2014.

[3] P. E. Debevec and J. Malik, “Recovering high dynamic range
radiance maps from photographs,” in SIGGRAPH, 2008.

[4] M. D. Grossberg and S. K. Nayar, “Determining the camera re-
sponse from images: What is knowable?” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 25, no. 11, pp. 1455–1467,
2003.

[5] S. J. Kim, H. T. Lin, Z. Lu, S. Ssstrunk, S. Lin, and M. S. Brown,
“A new in-camera imaging model for color computer vision
and its application,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 34, no. 12, pp. 2289–2302, 2012.

[6] S. Mann and R. W. Picard, “On being ‘undigital’ with digital cam-
eras: Extending dynamic range by combining differently exposed
pictures,” in Proc. of IS&T, 1995, pp. 442–448.

[7] T. Mitsunaga and S. K. Nayar, “Radiometric self calibration,” in
CVPR, 1999.

[8] S. Nam and S. J. Kim, “Modelling the scene dependent imaging in
cameras with a deep neural network,” in ICCV, 2017.

[9] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
Trans. on Consumer Electronics, vol. 38, no. 1, 1992.

[10] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte,
L. Benini, and L. V. Gool, “Soft-to-hard vector quantization for
end-to-end learning compressible representations,” in NIPS, 2017.

[11] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized
image compression,” in ICLR, 2017.

[12] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston,
“Variational image compression with a scale hyperprior,” in ICLR,
2018.

[13] K. Gregor, F. Besse, D. Jimenez Rezende, I. Danihelka, and D. Wier-
stra, “Towards conceptual compression,” in NIPS, 2016.

[14] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. T.
Chinen, S. J. Hwang, J. Shor, and G. Toderici, “Improved lossy
image compression with priming and spatially adaptive bit rates
for recurrent networks,” in arXiv, 2017.

[15] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convo-
lutional networks for content-weighted image compression,” in
arXiv, 2017.

[16] O. Rippel and L. Bourdev, “Real-time adaptive image compres-
sion,” in ICML, 2017.

[17] L. Theis, W. Shi, A. Cunningham, and F. Huszr, “Lossy image
compression with compressive autoencoders,” in ICLR, 2017.

[18] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,
S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image
compression with recurrent neural networks,” in arXiv, 2015.

[19] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen,
J. Shor, and M. Covell, “Full resolution image compression with
recurrent neural networks,” in CVPR, 2017.

[20] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in The Thrity-Seventh
Asilomar Conference on Signals, Systems Computers, 2003.

[21] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression
Fundamentals, Standards and Practice. Norwell, MA, USA: Kluwer
Academic Publishers, 2001.

[22] “WebP image format.” [Online]. Available:
https://developers.google.com/speed/webp/

[23] F. Bellard, “BPG image format.” [Online]. Available:
https://bellard.org/bpg/

[24] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and
L. Van Gool, “Conditional probability models for deep image
compression,” in CVPR, 2018.

[25] A. Chakrabarti, D. Scharstein, and T. E. Zickler, “An empirical
camera model for internet color vision,” in BMVC, 2009.

[26] L. Yuan and J. Sun, “High quality image reconstruction from raw
and JPEG image pair,” in ICCV, 2011.

[27] H. T. Lin, Z. Lu, S. J. Kim, and M. S. Brown, “Nonuniform lattice
regression for modeling the camera imaging pipeline,” in ECCV,
2012.

[28] D. Cheng, A. Abdelhamed, B. Price, S. Cohen, and M. S. Brown,
“Two illuminant estimation and user correction preference,” in
CVPR, 2016.

[29] D. Cheng, B. Price, S. Cohen, and M. S. Brown, “Beyond white:
Ground truth colors for color constancy correction,” in ICCV, 2015.

[30] H. C. Karaimer and M. S. Brown, “Improving color reproduction
accuracy on cameras,” in CVPR, 2018.

[31] ——, “A software platform for manipulating the camera imaging
pipeline,” in ECCV, 2016.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in arXiv, 2014.

[33] Eastman Kodak, “Kodak lossless true color image suite (PhotoCD
PCD0992).”

