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ABSTRACT

We address the problem of automatically detecting oc-
cluded regions given a blurred/unblurred image pair of a
scene taken from different viewpoints. The occlusion can
be due to single or multiple objects. We present a unified
framework for detecting occluder(s) that is reasonably robust
to non-uniform motion blur as well as variations in camera
pose (without the need for deblurring). We assume that the
occluded pixels occupy only a relatively small area and that
the camera motion trajectory is sparse in the camera motion
space. We validate the performance of our algorithm with
experiments on synthetic and real data.

Index Terms— Occlusion, non-uniform blur, registra-
tion, sparsity

1. INTRODUCTION

Detecting occluded regions in images is an extensively stud-
ied problem in image processing and computer vision due
to its applicability to a vast range of areas such as tracking,
surveillance, object recognition, inpainting [1], [2], [3], [4],
[5] etc. The objective, in a typical setting, is to automati-
cally detect occlusion(s) given a pair of images taken from
different view points and at different times. The occlusions
themselves may have been caused by the entry or disap-
pearance of objects in the scene within the time-span of the
two observations. A common approach is to first compen-
sate for the variations in pose by registering the two images
with respect to each other followed by differencing to reveal
changes in the scene. For small occlusions, the images can
be aligned even using standard registration techniques [6],
[7] that do not account for occlusions. This is because the
matching of unoccluded pixels can be expected to sufficiently
outweigh any possible degradation arising from attemptingto
match occluded pixels with unoccluded pixels and vice versa.
However, larger occlusions warrant methods that detect the
occluded pixels and exclude them from the registration pro-
cess [8]. This challenging problem of detecting occlusions
becomes even more ill-posed if one of the images in the pair
is blurred due to the presence of camera shake. This is of-
ten the case when a quick fly-through is attempted for the
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Fig. 1. An aerial view of a parking lot (best viewed elec-
tronically). (a) Latent (unblurred) image, (b) blurred andoc-
cluded observation taken from a different view point, and (c)
zoomed-in regions from Fig. 1(b) showing the presence of
non-uniform blur.

recoverage of a particular geographic area, for which detailed
surveillance images (i.e., latent images) are already available.
Moreover, if the revisit is made at a time when the luminance
is weak [9], then the exposure time needs to be increased,
thereby increasing the chances of motion blur. Detecting oc-
clusions is important for revealing changes in infrastructure,
deployment of military units, modification/introduction of
equipment etc. As pointed out in [10], traditional registration
methods such as direct and feature-based approaches cannot
be used in such a case due to photometric inconsistencies
introduced by the blur. The alignment approach presented in
[10] is based on the convolution model and applies only to the
restrictive uniform blur case. However, in the case of general
camera motion, the blur incurred can be significantly non-
uniform across the image, and a space-varying formulation
becomes necessary to describe the blurring process [11], [12],
[13], [14]. It is this compounded scenario that we address in
this work as depicted in Fig. 1. Note that there can be more
than one occluder.

While conventional approaches to detecting occluder(s)
would require one to follow the deblur-register-difference
pipeline, we present a unified framework which directly
solves for the occluder(s) by accounting for the non-uniform
blur and the changes in camera pose given a blurred/unblurred
image pair. We show that direct registration of the pair is pos-
sible without the need for deblurring. Registration, in this
context, tantamounts to estimating the set of warps which



when applied on the focused image aligns it with the blurred
image in the region of overlap. The elegance of our method
lies in the fact that registration and occlusion detection turn
out to be a natural fallout of our blur estimation process. We
assume that the occluded pixels occupy only a relatively small
portion of the image and that the camera motion trajectory
is sparse in the camera motion space. We also assume the
scene to be sufficiently far away so that depth variations can
be ignored. We use a multiscale approach in which the image
resolution is varied from coarse-to-fine, thus rendering the
algorithm efficient both in terms of computational time and
memory requirements.
Summary of contributions:
1. We propose a method for registering a blurred/unblurred
image pair in the presence of non-uniform blur.
2. The approach is direct in the sense that it can detect oc-
clusions without deblurring. It is robust to motion blur and
variations in camera pose.
3. We derive an objective function with sparsity constraints
that when minimized yields the location and the intensity
of the occluded pixels as well as an estimate of the camera
motion.

2. PROJECTIVE MOTION BLUR MODEL

In this section, we briefly review the non-uniform blur model
for a far-away planar scene. The projective model discussed
in [11], [12], [13], [14] assumes that the blurred image is the
weighted average of warped instances of the latent image. In
the discrete domain, this can be represented as

b (i, j) =
∑

k∈T

ω (k) l (Hk (i, j)) (1)

Here l(i, j) denotes the latent image of the scene,b(i, j) is
the blurred observation, andHk(i, j) denotes the image coor-
dinates when a homographyHk is applied to the point(i, j).
The parameterω, also called thetransformation spread func-
tion (TSF), depicts the camera motion, whereω(k) denotes
the fraction of the total exposure duration for which the cam-
era stayed in the position that caused the transformationHk.
The TSFω is defined on the discrete transformation spaceT

which is the set of sampled camera poses. The transforma-
tion space is discretized in such a way that the difference in
the displacements of a point light source due to two different
transformations from the discrete setT is at least one pixel.
Akin to a PSF,

∑

k∈T
ω (k) = 1.

The homographyHk in equation (1) in terms of the cam-
era parameters is given by

Hk = Kv

(

Rk +
1

d0
Tk[0 0 1]

)

K−1
v

whereTk=[Txk
Tyk

Tzk ]
T is the translation vector, andd0

is the scene depth. The rotation matrixRk is parameterized

[11] in terms ofθX , θY andθZ , which are the angles of ro-
tation about the three axes. The camera intrisic matrixKv is
assumed to be of the formKv = diag(v, v, 1), wherev is the
focal length. Six degrees of freedom arise fromTk andRk

(three each). In this discussion, we assume thatv is either
known or can be extracted from the camera’s EXIF tags.

3. SPARSITY, REGISTRATION AND OCCLUSION
HANDLING

If l, b represent the latent image and the blurred image,
respectively, lexicographically ordered as vectors, then, in
matrix-vector notation, equation (1) can be expressed as

b = Aω (2)

whereA is the matrix whose columns contain projectively
transformed copies ofl, andω denotes the vector of weights
ω(k). Note thatω is a sparse vector since the blur is typically
due to incidental camera shake and only a small fraction of
the poses inT will have non-zero weights inω.

In the scenario that we consider, one of the images in the
pair is not only blurred because of camera jitter but can also
contains occluder(s). To deal with this situation, we modify
the linear model of (2) as

bocc = b+ o (3)

wherebocc is the blurred and occluded observation. In the
image formation model, the occlusion happens first followed
by blurring, i.e.,bocc is the weighted average of warped in-
stances of an unknown focused image containing occlusions.
The non-zero entries ofo, therefore, model the blurred oc-
cluder(s) inbocc. Since the occluder(s) can have arbitrary in-
tensities, techniques designed for small noise cannot be used
here. The locations of occlusion differ for different inputim-
ages and are not known a priori to the algorithm. But we as-
sume that the occluded pixels occupy only a relatively small
portion of the image. Therefore, the occlusion vectoro, in the
same vein as the vectorω, has sparse non-zero entries [15].
Sinceb = Aω, we rewrite equation (3) as

bocc =
[

A I
]

[

ω

o

]

= Bx (4)

HereB = [A I] ∈ R
N×(NT+N), whereN is the total number

of pixels in the image,NT is the total number of transforma-
tions inT, andI is anN × N identity matrix. Hence, the
systembocc = Bx is always underdetermined and does not
have a unique solution forx. We, therefore, attempt to recover
x as the sparsest solution to the systembocc = Bx. Note that
in the absence of occlusion,x = ω and our problem reduces
to the special case of estimating a sparse TSF.

With the occlusion model incorporated, the energy func-
tion to be minimized takes the form

E(x) = ||bocc −Bx||22 + β||x||1 (5)

s.t ∀k ∈ T, ω(k) ≥ 0 and
∑

k∈T
ω (k) = 1.
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Fig. 2. (a) Latent image, (b) latent image from a different camera pose and with synthetically added occluders, (c) blurred and
occluded observation, (d) latent image reblurred using theestimated camera motion and overlaid on the blurred and occluded
observation, and (e) residual image.

wherex = [ω o]T , andω is non-negative. In the presense
of an occluder,o can be positive or negative depending on
whether the occluder causes the intensity at that pixel to in-
crease (bright occluder) or decrease (dark occluder), respec-
tively. Hence, non-negativity cannot be imposed on the entire
vectorx because then the model will not be able to handle
dark occluder(s). Instead, in our implementation, we impose
non-negativity and sparsity onx, but change the form of the
identity matrixI as discussed below.

In the absence of an occluder, the convex combination of
the elements of a particular row, sayi, of A produces the in-
tensity of the blurred pixel at theith location in the image. If
the observed intenstiy (inbocc) at theith pixel is greater than
the maximum intensity of the elements of theith row, then,
by convexity, we can deduce that it is the presence of a bright
occluder that causes the intensity at that pixel to increase. A
positive value ino will then explain the observed intensity
at that pixel. On the other hand, if the observed intensity at
the ith pixel is less than the minimum intensity of the ele-
ments of theith row, we conclude that the occluder is dark.
In this case, we replace the ‘1’ at the corresponding location
in I with a ‘-1’. This change in sign permits us to impose
non-negativity onx because the residual can now take both
positive and negative values. ThusB now becomes[A Imod]
whereImod is a diagonal matrix (with +1 and -1 along the
diagonal) obtained after verifying the above condition. Itis
to be noted that the blurred pixel at theith location receives
contributions only from the neighbourhood of theith location
in the latent image, where the neigbhourhood size varies with
the spatial location and the warps applied (since the blur is
non-uniform). Therefore, the minimum and maximum values
of the rows ofA are not global constants. If a dark occluder
pixel occurs with an intensity greater than the minimum in-
tensity of the elements of the corresponding row inA, then
it would render the above model erroneous. However, this is
an unlikely event since we expect the occluder pixel’s inten-
sity to be significantly different from that of the background.
The optimization problem in equation (5) can be solved us-
ing the nnLeastR function of the Lasso algorithm [16] which
considers the additionall1-norm constraint.

3.1. Multiscale Implementation

Solving equation (5) directly at full resolution would require
storing all the transformed copies ofl simultaneously inA and
allowing for occlusion at each and every pixel in the image.
For general 6D camera motion, with thousands of poses in
the TSF space, this might mean that the computer’s memory
capacity will be exceeded even for moderately sized images.
We, therefore, use a multiscale approach similar to [11]. We
start with a coarse representation of the image, the TSF and
the occlusion, and repeatedly refine the estimated TSF and
occlusion at higher resolutions.

We first build Gaussian pyramids for bothl andbocc. At
the coarsest scale, the matrixA is built for the whole trans-
formation spaceT and we allow for occlusion at every pixel
since the location of the occluder(s) is unknown. It must be
mentioned that downsampling the images has the effect of
reducing the blur, thereby decreasing the space of allowed
transformations inT. At each scale, we find the optimal TSF
ω and the occlusiono by minimizing equation (5). We then
upsampleω ando to the next scale using bilinear interpola-
tion and find the non-zero entries in both. Forω, this process
gives us several 6D non-zero regions inside the transforma-
tion space. When finding the optimal TSF at the next stage,
we only search for valid homographies which lie within these
non-zero regions. Likewise, at the next scale, we look for
occluded pixels only at those locations ino which have non-
zero entries. This corresponds to discarding many columns of
B, reducing both the computation and memory demands of
the algorithm. We repeat this process at each scale until the
optimal TSF and the occluder(s) have been estimated at the
highest resolution.

4. EXPERIMENTS

This section consists of two parts. We first evaluate the per-
formance of our algorithm on synthetic data. Following this,
we demonstrate the applicability of the proposed method on
real images.

We begin with a synthetic example. A latent image of size
240× 240 pixels of an airport bay is shown in Fig. 2(a). The
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Fig. 3. (a) Real latent image, (b) blurred and occluded observation, and (c) residual image.

same scene from a different camera pose and with syntheti-
cally added occluders (enclosed in red boxes) is shown in Fig.
2(b). The TSF space is chosen as follows- in-plane transla-
tions:Tx, Ty = [−7 : 1 : 7], in-plane rotation:Rz = [−3◦ :
1◦ : 3◦], out-of-plane translation:Tz = [0.95 : 0.05 : 1.05]
and out-of-plane rotations:Rx, Ry = [−4

3

◦

: 1
3

◦

: 4
3

◦

]. To
simulate the motion of the camera, we manually generate 6D
camera motion with a connected path in the motion space
and initialize the weights. The synthezied camera motion
(TSF model) is applied on Fig. 2(b) to produce the blurred
and occluded image (Fig. 2(c)). To evaluate the proposed
method, we set the number of scales in the multiscale imple-
mentation to 3 and first coarsely align the latent image and
the blurred and occluded image at the lowest resolution with-
out accounting for occlusion. In this step, the transforma-
tion intervals are expanded toTx, Ty = [−40 : 1 : 40] and
Rz = [−8◦ : 1◦ : 8◦] to accommodate for the large change
in pose between the two images. Note that this increase in
the transformation intervals is not very demanding because
we work at the lowest resolution of the image and the TSF
in the multiscale algorithm. The ‘dominant pose’, i.e., the
pose with the highest weight from the estimated vectorω is
used to align the latent image with the blurred image. The
TSF is now built around this dominant pose and we minimize
equation (5) using the multiscale approach but now by also
taking occlusions into consideration. Fig. 2(d) shows the la-
tent image reblurred using the estimatedω and overlaid on
the blurred and occluded observation. It is to be noted that
the TSF model implicitly accounts for the change in pose be-
tween the two images. The residual image shown in Fig. 2(e)
is the absolute difference between the blurred and occluded
observation (Fig. 2(c)), and the reblurred latent image. Note
that the occluders are correctly detected.

Next, we discuss results obtained using real data. We be-
gin with an example in which the view point change is only
due to in-plane translation of the camera. The roof-top images
in Figs. 3(a) and 3(b), which represent the latent image and
the blurred and occluded image, respectively, were captured
using a Canon 60D DSLR camera with the same lens setting.
The focal length was retrieved from the camera’s EXIF data.
Since an interval of time had elapsed before the second image
was captured, the images were pre-processed using the ap-
proach in [17] to account for small global changes in illumi-
nation. The residual image, shown in Fig. 3(c), demonstrates

(a) (b)

Fig. 4. Output results for the real example in Fig. 1. (a) Re-
blurred latent image registered with the blurred and occluded
observation, and (b) residual image.

our algorithm’s ability to detect the occlusion even in the pres-
ence of significant amounts of blur. Yet another real example
but with an appreciable change in view point was shown in
Fig. 1. A zoomed-in view of the blurred occluders (in this
case people) is shown in the red box in Fig. 1(c). The latent
image reblurred using the estimatedω and registered with the
blurred and occluded observation is shown in Fig. 4(a). The
residual image (Fig. 4(b)) reveals that the dark occluders have
been accurately detected by the proposed method.

5. CONCLUSIONS

In this paper, we proposed a unified framework for registra-
tion and detection of occlusions from a blurred/unblurred im-
age pair. The proposed method exploits the sparsity of the
TSF and the occlusions, and is robust to non-uniform motion
blur and variations in camera pose. Synthetic as well as real
results were given for the purpose of validation. In the fu-
ture, we plan to extend the scope of this work to include local
changes in illumination and to handle occlusions with inten-
sities close to that of the background.
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