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ABSTRACT

We address the problem of automatically detecting oc-
cluded regions given a blurred/unblurred image pair of a
scene taken from different viewpoints. The occlusion can
be due to single or multiple objects. We present a unified
framework for detecting occluder(s) that is reasonablyisbb
to non-uniform motion blur as well as variations in camera
pose (without the need for deblurring). We assume that the
occluded pixels occupy only a relatively small area and that
the camera motion trajectory is sparse in the camera motionid. 1. An aerial view of a parking lot (best viewed elec-

space. We validate the performance of our algorithm wittfronically). (a) Latent (unblurred) image, (b) blurred avw
experiments on synthetic and real data. cluded observation taken from a different view point, ar)d (C

zoomed-in regions from Fig. 1(b) showing the presence of
non-uniform blur.

Index Terms— Occlusion, non-uniform blur, registra-
tion, sparsity
recoverage of a particular geographic area, for which ketai
1. INTRODUCTION surveillance images (i.e., latentimages) are alreadyablai
Moreover, if the revisit is made at a time when the luminance

Detecting occluded regions in images is an extensively-studs weak [9], then the exposure time needs to be increased,
ied prob]em in image processing and computer vision dugﬁereby increasing the chances of motion blur. Detecting oc
to its applicability to a vast range of areas such as tragkingFlusions is important for revealing changes in infrasuiuet
surveillance, object recognition, inpainting [1], [2]][34],  deployment of military units, modification/introductiorf o

[5] etc. The objective, in a typical setting, is to automati-equipment etc. As pointed out in [10], traditional regittra
cally detect occlusion(s) given a pair of images taken frominethods such as direct and feature-based approaches cannot
different view points and at different times. The occlusion be used in such a case due to photometric inconsistencies
themselves may have been caused by the entry or disaffitroduced by the blur. The alignment approach presented in
pearance of objects in the scene within the time-span of thid0] is based on the convolution model and applies only to the
two observations. A common approach is to first Compen[estrictive uniform blur case. However, in the case of gaher
sate for the variations in pose by registering the two image§amera motion, the blur incurred can be significantly non-
with respect to each other followed by differencing to réveauniform across the image, and a space-varying formulation
changes in the scene. For small occlusions, the images cBgcomes necessary to describe the blurring process [P1], [1
be aligned even using standard registration techniques [6[13], [14]. Itis this compounded scenario that we address in
[7] that do not account for occlusions. This is because théhis work as depicted in Fig. 1. Note that there can be more
matching of unoccluded pixels can be expected to suffigient/than one occluder.

outweigh any possible degradation arising from attemgting While conventional approaches to detecting occluder(s)
match occluded pixels with unoccluded pixels and vice versavould require one to follow the deblur-register-differenc
However, larger occlusions warrant methods that detect thgipeline, we present a unified framework which directly
occluded pixels and exclude them from the registration prosolves for the occluder(s) by accounting for the non-umifor
cess [8]. This challenging problem of detecting occlusiondlur and the changes in camera pose given a blurred/undlurre
becomes even more ill-posed if one of the images in the paimage pair. We show that direct registration of the pair is-po

is blurred due to the presence of camera shake. This is o§ible without the need for deblurring. Registration, insthi
ten the case when a quick fly-through is attempted for theontext, tantamounts to estimating the set of warps which



when applied on the focused image aligns it with the blurred11] in terms offx, 6y anddz, which are the angles of ro-
image in the region of overlap. The elegance of our methothtion about the three axes. The camera intrisic mditrjxs

lies in the fact that registration and occlusion detectimmt assumed to be of the fordd, = diag(v, v, 1), wherev is the

out to be a natural fallout of our blur estimation process. Wdocal length. Six degrees of freedom arise fr@dmand Ry,
assume that the occluded pixels occupy only a relativelfisma(three each). In this discussion, we assume thist either
portion of the image and that the camera motion trajectorknown or can be extracted from the camera’s EXIF tags.

is sparse in the camera motion space. We also assume the

scene to be sufficiently far away so that depth variations can3 spARSITY, REGISTRATION AND OCCLUSION

be ignored. We use a multiscale approach in which the image HANDLING

resolution is varied from coarse-to-fine, thus rendering th

algorithm efficient both in terms of computational time andif |, b represent the latent image and the blurred image,
memory requirements. respectively, lexicographically ordered as vectors, than
Summary of contributions: matrix-vector notation, equation (1) can be expressed as

1. We propose a method for registering a blurred/unblurred

: T . b= Aw (2)
image pair in the presence of non-uniform blur.
2. The approach is direct in the sense that it can detect ogvhere A is the matrix whose columns contain projectively
clusions without deblurring. It is robust to motion blur and transformed copies df andw denotes the vector of weights
variations in camera pose. w(k). Note thatw is a sparse vector since the blur is typically
3. We derive an objective function with sparsity constmint due to incidental camera shake and only a small fraction of
that when minimized yields the location and the intensitythe poses irT will have non-zero weights iw.

of the occluded pixels as well as an estimate of the camera In the scenario that we consider, one of the images in the

motion. pair is not only blurred because of camera jitter but can also
contains occluder(s). To deal with this situation, we mpdif
2. PROJECTIVE MOTION BLUR MODEL the linear model of (2) as
bocc =b+o0 3)

In this section, we briefly review the non-uniform blur model ) .
for a far-away planar scene. The projective model discussefii€r€boce is the blurred and occluded observation. In the
in [11], [12], [13], [14] assumes that the blurred image is th IMage formation model, the occlusion happens first followed

weighted average of warped instances of the latent image. RY PIUrTing, i.e.,bocc is the weighted average of warped in-
the discrete domain, this can be represented as stances of an unknown focused image containing occlusions.

The non-zero entries af, therefore, model the blurred oc-
b(i,j) = Z w (k)L (Hy (i,5)) (1) cludgr(s) inbocc.. Since thg occluder(s) can r_\ave arbitrary in-
tensities, techniques designed for small noise cannot e us
here. The locations of occlusion differ for different inuon:
Herel(i, j) denotes the latent image of the scebig, j) is  ages and are not known a priori to the algorithm. But we as-
the blurred observation, aridy (i, j) denotes the image coor- sume that the occluded pixels occupy only a relatively small
dinates when a homograply is applied to the pointi, j).  portion of the image. Therefore, the occlusion veetdn the
The parametew, also called théransformation spread func- same vein as the vectar, has sparse non-zero entries [15].
tion (TSF), depicts the camera motion, wheré:) denotes  Sinceb = Aw, we rewrite equation (3) as
the fraction of the total exposure duration for which the eam
era stayed in the position that caused the transformétion boce = A I ] [ :)J } = Bx (4)
The TSFw is defined on the discrete transformation sp#ice
which is the set of sampled camera poses. The transformédereB = [A I] € RV*(Vt+N) whereN is the total number
tion space is discretized in such a way that the difference iof pixels in the imageNt is the total number of transforma-
the displacements of a point light source due to two differentions in'T, and/ is an N x N identity matrix. Hence, the
transformations from the discrete gBtis at least one pixel. systembs.. = Bx is always underdetermined and does not

keT

AkintoaPSF) ", . w (k) = 1. have a unique solution for. We, therefore, attempt to recover
The homograph${,, in equation (1) in terms of the cam- x as the sparsest solution to the systesa. = Bx. Note that
era parameters is given by in the absence of occlusior,= w and our problem reduces
to the special case of estimating a sparse TSF.
He = K, (Rk + iTk 00 1]> K;! With the occlusion model incorporated, the energy func-
0 tion to be minimized takes the form

whereTy=[T}, T, T..]7 is the translation vector, and) E(x) = |[boce — Bx|[3 + Bllx||1 (5)
is the scene depth. The rotation matfy is parameterized st VkeT,wk)>0 and >, rw(k)=1.



(e)

Fig. 2. (a) Latentimage, (b) latent image from a different camersepand with synthetically added occluders, (c) blurred and
occluded observation, (d) latent image reblurred usingetenated camera motion and overlaid on the blurred andidedl
observation, and (e) residual image.

wherex = [w o]”, andw is non-negative. In the presense 3.1. Multiscale Implementation
of an occluderp can be positive or negative depending on ) , , , .
whether the occluder causes the intensity at that pixel-to in>°!Ving equation (5) directly at full resolution would recg
crease (bright occluder) or decrease (dark occluder)egesp Storing all the transformed copieslafimultaneously im and
tively. Hence, non-negativity cannot be imposed on thaenti allowing for occlusion at each and every pixel in the image.

vectorx because then the model will not be able to handid O 9eneral 6D camera motion, with thousands OT poses in
dark occluder(s). Instead, in our implementation, we inepos tN€ TSF space, this might mean that the computer's memory

non-negativity and sparsity at, but change the form of the capacity will be exceeded even for moderately sized images.
identity matrix/ as discussed below. We, therefore, use a multiscale approach similar to [11]. We

start with a coarse representation of the image, the TSF and

.. the occlusion, and repeatedly refine the estimated TSF and
In the absence of an occluder, the convex combination chcclusion at higher resolutions

the glements of a parti_cular row,hsa)of A produc_es the in- We first build Gaussian pyramids for bdtlandbeec. At
tensity of the plurred_ pixel at the qu:]?t|(_)n n the image. If the coarsest scale, the matrixis built for the whole trans-
the observed intenstiy (INocc) at thei™ pixelis greater than - ¢, ation spacd’ and we allow for occlusion at every pixel

the maximum intensity of the eler_n_ents of tie row, then, . since the location of the occluder(s) is unknown. It must be
by convexity, we can dedqce th?t itis the presence ofa brlgrH’lentioned that downsampling the images has the effect of
occluder that causes the intensity at that pixel to increAse reducing the blur, thereby decreasing the space of allowed

positive value ino will then explain the observed intensity transformations ifl". At each scale, we find the optimal TSF
at that pixel. On the other hand, if the observed intensity al, and the occlusion by minimizing equation (5). We then
the i*" pixel is less than the minimum intensity of the ele- '

ts of theith lude that th luder is dark upsamplev ando to the next scale using bilinear interpola-
men's o1 the =" row, we congu, € that the occluder 1S dark. 5, and find the non-zero entries in both. Earthis process
In this case, we replace the ‘1’ at the corresponding looatio

in T with a ~1". This ch L ; . gives us several 6D non-zero regions inside the transforma-
In [rwith a -1 IS change in sign permits us to Impose space. When finding the optimal TSF at the next stage,

non_—pegatn(;ny On’f[. becaluse thl? reS|duag can now tIake bOIr\Ne only search for valid homographies which lie within these
positive and negative values. ow becomesA Jmod] non-zero regions. Likewise, at the next scale, we look for

\éyherelnrod kl)st a d:;ig;)tnal mz_atn_x (V:r']th +b1 and '1;:.0”9 tlt;e occluded pixels only at those locationsdrwhich have non-
iagonal) obtained after verifying the above conditionis zero entries. This corresponds to discarding many colurhns o

to be.not_ed that the blurred p_ixel at tifé location rece?ves B, reducing both the computation and memory demands of
pontnbunon; only from the nelghpourhood of tﬁjé Ioca’ulon _the algorithm. We repeat this process at each scale until the
in the Iat_ent 'mage, where the nelgbhour_hood slze varids WIFoptimal TSF and the occluder(s) have been estimated at the
the spatial location and the warps applied (since the blur 'ﬁighest resolution.

non-uniform). Therefore, the minimum and maximum values

of the rows ofA are not global constants. If a dark occluder

pixel occurs with an intensity greater than the minimum in- 4. EXPERIMENTS

tensity of the elements of the corresponding rowdinthen

it would render the above model erroneous. However, this i$his section consists of two parts. We first evaluate the per-
an unlikely event since we expect the occluder pixel's intenformance of our algorithm on synthetic data. Following this
sity to be significantly different from that of the backgralin we demonstrate the applicability of the proposed method on
The optimization problem in equation (5) can be solved usreal images.

ing the nnLeastR function of the Lasso algorithm [16] which ~ We begin with a synthetic example. A latent image of size
considers the additional-norm constraint. 240 x 240 pixels of an airport bay is shown in Fig. 2(a). The
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Fig. 3. (a) Real latent image, (b) blurred and occluded obsenvaéind (c) residual image.

same scene from a different camera pose and with syntheti-
cally added occluders (enclosed in red boxes) is shown in Fig
2(b). The TSF space is chosen as follows- in-plane transla-

tions: Ty, T, = [-7: 1 : 7], in-plane rotationR, = [—3° :
1° : 3°], out-of-plane translationT, = [0.95 : 0.05 : 1.05]
and out-of-plane rotations®,,, R, = [5° : 1° : 4°]. To

simulate the motion of the camera, we manually generate 6D
camera motion with a connected path in the motion space
and initialize the weights. The synthezied camera motion
(TSF model) is applied on Fig. 2(b) to produce the qurredF
and occluded image (Fig. 2(c)). To evaluate the proposeg
method, we set the number of scales in the multiscale imple=
mentation to 3 and first coarsely align the latent image and
the blurred and occluded image at the lowest resolution-withour algorithm’s ability to detect the occlusion even in tihep
out accounting for occlusion. In this step, the transformaence of significant amounts of blur. Yet another real example
tion intervals are expanded ,, 7, = [—40 : 1 : 40] and  but with an appreciable change in view point was shown in
R, = [-8° : 1° : 8°] to accommodate for the large changeFig. 1. A zoomed-in view of the blurred occluders (in this
in pose between the two images. Note that this increase itase people) is shown in the red box in Fig. 1(c). The latent
the transformation intervals is not very demanding becausinage reblurred using the estimatednd registered with the
we work at the lowest resolution of the image and the TSHlurred and occluded observation is shown in Fig. 4(a). The
in the multiscale algorithm. The ‘dominant pose’, i.e., theresidualimage (Fig. 4(b)) reveals that the dark occludaveh
pose with the highest weight from the estimated veatas  been accurately detected by the proposed method.
used to align the latent image with the blurred image. The
TSF is now built around this dominant pose and we minimize 5. CONCLUSIONS
equation (5) using the multiscale approach but now by also
taking occlusions into consideration. Fig. 2(d) shows e | |n this paper, we proposed a unified framework for registra-
tent image reblurred using the estimatedand overlaid on  tion and detection of occlusions from a blurred/unblurred i
the blurred and occluded observation. It is to be noted thaige pair. The proposed method exploits the sparsity of the
the TSF model implicitly accounts for the change in pose beTSF and the occlusions, and is robust to non-uniform motion
tween the two images. The residual image shown in Fig. 2(ef)lur and variations in camera pose. Synthetic as well as real
is the absolute difference between the blurred and occlude@sults were given for the purpose of validation. In the fu-
observation (Fig. 2(c)), and the reblurred latent imageteNo ture, we plan to extend the scope of this work to include local
that the occluders are correctly detected. changes in illumination and to handle occlusions with inten
Next, we discuss results obtained using real data. We béities close to that of the background.
gin with an example in which the view point change is only
due to in-plane translation of the camera. The roof-top iesag 6. ACKNOWLEDGEMENTS
in Figs. 3(a) and 3(b), which represent the latent image and
the blurred and occluded image, respectively, were cagtureA part of this work was supported by a grant from the
using a Canon 60D DSLR camera with the same lens settind\sian Office of Aerospace Research and Development,
The focal length was retrieved from the camera’s EXIF dataAOARD/AFOSR. The support is gratefully acknowledged.
Since an interval of time had elapsed before the second imadée results and interpretations presented in this paper are
was captured, the images were pre-processed using the apat of the authors, and do not necessarily reflect the views
proach in [17] to account for small global changes in illumi-or priorities of the sponsor, or the US Air Force Research
nation. The residual image, shown in Fig. 3(c), demondratel aboratory.

(b)

ig. 4. Output results for the real example in Fig. 1. (a) Re-
lurred latent image registered with the blurred and ocdud
bservation, and (b) residual image.
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