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This supplementary material carries additional results and details that could
not be provided in the main paper due to space constraints. We first illustrate
through a few examples why ours is a more general dynamic segmentation algo-
rithm than our closest competitors, Chakrabarti et al. [4] and Paramanand and
Rajagopalan [21]. Next, we provide a visualization of the kernels predicted by
our network using the dataset of Kohler et al. [17]. We also perform experiments
on the dataset of [17] and on the static scenes from the blur perception dataset
[23] which were not included in the main paper. Additional information regard-
ing the implementation of our scheme has also been provided. All references
correspond to the main paper unless stated otherwise.

S1 Overview of comparisons with other methods

As mentioned in Section 4 of our main paper, the dynamic segmentation algo-
rithm of [4] is the work most closely related to ours since they also focus on the
problem of detecting moving objects from a single blurred image (see caption of
Fig. 1 of their paper). However, they segment the moving objects in the scene
based on two assumptions – (i) the background is sharp and the foreground
object(s) are motion-blurred (see paragraph two, first line in Section 5 of their
paper), and (ii) all foreground objects are corrupted by the same kernel (see
paragraph one, last line in Section 5). Therefore, their algorithm is only appli-
cable to the very restricted case of a static camera and a single moving object
(or multiple spatially non-contiguous objects but all having the same motion).
The method of [21], on the other hand, segments a given image into different
regions based on the motion; they do not explicitly address the problem of seg-
menting dynamic objects. However, their algorithm cannot resolve depth-motion
ambiguity when segmenting different regions since they do not take depth into
account – even in the simple situation of a moving camera imaging a bilayer
scene containing a background depth layer and a single stationary object in the
foreground depth layer, [21] may incorrectly label the object as dynamic since the
blur incurred by the foreground layer will be different from the background due
to the difference in depth. See Table S1 for a succinct overview of the methods
in [4] and [21], and D3M.



2 Abhijith Punnappurath, Yogesh Balaji, Mahesh Mohan, Rajagopalan A. N.

Table S1. A comparison of [4], [21] and D3M. Y = Yes, N = No, and × = don’t care
condition (can be either Y or N).

S.No. Sharp Sharp Single Single [4] [21] D3M Remarks
object back object depth

1 Y Y × × 3 3 3 Static camera and scene.

2 N Y Y Y 3 3 3 All three methods work.

3 × N Y Y 7 3 3 Violates [4]’s focused background assumption.

4 N × N Y 7 3 3 Violates [4]’s single object assumption.

5 Y N Y N 7 7 3 Violates [4]’s focused background assumption.

[21] may flag foreground object as dynamic

even if background is simply out-of-focus.

6 N Y Y N 7 7 3 [4] and [21] may flag stationary

defocused foreground object as dynamic.

7 N Y N N 7 7 3 Violates [4]’s single object assumption.

[21] may flag stationary defocused

foreground object as dynamic.

8 N N × N 7 7 3 Violates [4]’s focused background assumption.

[21] cannot resolve depth-motion ambiguity.

A synthetic example demonstrating four different interesting conditions (rows
2, 3, and 8 of Table S1) is shown in Fig. S1. The first row of Fig. S1 shows the
case of a static camera and a moving object with a single depth layer, and it can
be seen that all the three methods correctly identify the object as dynamic. The
second row depicts the case where the camera is panning at a speed that matches
the velocity of the dynamic object such that, in the resultant image, the object
appears sharp but the background is blurred, while the third row demonstrates
the practically common situation when the hand-held camera is not intentionally
tracking the dynamic object, but merely observing a dynamic scene resulting
in the entire image being blurred. In both these cases, the assumption made
by Chakrabarti et al. [4] of a sharp background and a motion-blurred object is
violated leading to an incorrect segmentation. The last row shows a bilayer scene
where only the camera is in motion while the object in the foreground depth layer
is stationary. In this case, [21] wrongly classifies the object as dynamic because
the kernels on the foreground object do not match the ones on the background
because of depth differences. Observe that our algorithm correctly identifies the
object as being dynamic in the first three cases and static in the fourth. This
is due to the fact that our inference of whether or not an object is dynamic is
independent of the camera, and is measured with respect to the background.
Furthermore, we take depth into account to ascertain whether the object is
stationary or moving.

We would also like to add that we have not compared our method against
Shi et al. [23] although we have used images from their dataset because their
technique is oriented towards detecting which pixels in an image are blurred
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Corresponds to row 2 of Table S1
Single depth layer – static camera – dynamic object – only object pixels are blurred

Corresponds to row 3 of Table S1
Single depth layer – moving camera – dynamic object – only background pixels are blurred

Corresponds to row 3 of Table S1
Single depth layer – moving camera – dynamic object – all pixels in the image are blurred

Corresponds to row 8 of Table S1
Two depth layers – moving camera – stationary object – all pixels in the image are blurred

Input GT [4] [21] D3M

Fig. S1. A synthetic example demonstrating D3M’s ability to segment moving objects
under various types of camera and object motions. The foreground and background
kernels are overlaid on the input images. See the text for details.

and which are not. In fact, there are several methods ((i) Liu et al., “Image
partial blur detection and classification,” in CVPR 2008, (ii) Su et al., “Blurred
image region detection and classification”, in ACM international conference on
Multimedia, 2011, (iii) Pang et al., “Classifying discriminative features for blur
detection,” IEEE Transactions on Cybernetics, 2015, and (iv) Lee and Kim,
“Blurred image region detection and segmentation,” in ICIP, 2014) that exclu-
sively tackle the problem of detecting blurred pixels in natural images. However,
none of these techniques address the issue of segmenting dynamic objects, and
that is why these comparisons have been omitted. On the other hand, our pro-
posed framework is end-to-end and can unambiguously detect moving objects at
different depth layers directly from the input blurred observation.

S2 Network assessment using Kohler et al. [17] dataset

As discussed in Section 2.1 of our main paper, we evaluate our network’s kernel
prediction accuracy by comparing the ground truth kernels in [17] with the PSFs
predicted by our network using the cross-correlation metric. An input blurred
image from the dataset of [17] is shown in Fig. S2(a). Fig. S2(b) shows the
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ground truth kernels for the blurred image in Fig. S2(a). Note that these kernels
were recorded from real camera motion. The PSFs predicted by our network are
displayed in Fig. S2(c), and it can be observed that our CNN outputs a close
approximation to the actual kernels.

(a)

(b) (c)

Fig. S2. (a) Input blurred image, (b) ground truth kernels, and (c) output kernels of
our CNN. (Kernels are best viewed as PDF.)

S3 Additional results on the datasets of [17] and [23]

Due to space constraints, we did not include segmentation results of our al-
gorithm on the dataset of Kohler et al. [17] in our main paper. While all the
scenes in this dataset are static, this is nevertheless relevant from a segmenta-
tion perspective; our algorithm is expected to classify all pixels as stationary in
all images. For quantitative evaluation of our dynamic segmentation results, we
compute specificity (SPC) as

SPC =
TN

TN + FP
(1)
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where TN and FP denote true negative and false positive, respectively, and ‘posi-
tive’ is when a pixel is classified as being dynamic1. The denominator in equation
(1) is equal to the total number of pixels in the image, while the numerator cor-
responds to the number of pixels classified as static. The SPC values averaged
over all 48 images using the methods in [4] and [21], and D3M, are provided
in Table S2. Our method records fewer false positives than the two competing
techniques, and rarely flags a static pixel as moving.

From the blur perception dataset of [23], we had reported (in our main pa-
per) quantitative results only on the 296 dynamic scenes. We had included just
two static examples in row two of Fig. 6 in the main paper. For a comprehensive
quantitative assessment, we computed the average SPC value using the remain-
ing 704 static images, and these are reported in Table S2. It can be seen from
the results that D3M yet again performs better than others.

Table S2. Average SPC values for the methods in [4] and [21], and D3M, on the
dataset of Kohler et al. [17] and the static scenes from the blur perception dataset [23].
(Higher SPC is better.)

[4] [21] D3M

Kohler et al. [17] 0.596 0.544 0.939

Blur perception dataset [23] 0.741 0.675 0.964

S4 Additional experimental details

We used the czf segment code downloaded from the webpage of the first author of
[4] to report comparisons with their method. This code combines their proposed
blur cue and the color information in the image using an MRF model to output
a hard segmentation of the moving objects (see paragraph two of Section 7 of
[4]). Similar to [4], our segmentations are also hard. So also is the output of [21].
Hence, we computed, for each of these three methods – [4], [21] and D3M, a
single value of precision and a single value of recall for each input image. And
the average precision and recall values over all images were reported in Table 1
of our main paper.

For quantitative evaluation on the dynamic scenes in the blur perception
dataset [23], in Section 4.2 of our main paper, we made use of the ground truth
masks provided by the authors of [23]. However, as already mentioned in our
main paper, this dataset is originally designed for benchmarking of algorithms
that detect blurred pixels in an image whereas our objective is dynamic segmen-
tation. Hence, for the 296 dynamic scenes from the dataset that we used for our

1 We compute specificity and not precision and recall for these cases since there are no
true positives and false negatives for static scenes i.e., for images with no dynamic
pixels in the ground truth, precision is zero or undefined, while recall is undefined.
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Input image Original mask in [23] GT segmentation

Input image Original mask in [23] Our inverted mask GT segmentation

Fig. S3. An example depicting how the ground truth masks provided by the authors
of [23] should be interpreted for the dynamic segmentation task at hand.

study, the ground truth masks as given by [23] do not always directly correspond
with the dynamic objects. This is illustrated in Fig. S3. For the example in row
one, we directly use the mask provided in [23] since it correctly maps to the dy-
namic pixels in the scene. Observe that the foreground pixels are blurred while
the background is sharp i.e., foreground pixels are flagged one while the back-
ground pixels are marked as zero. However, for the example in row two where
the camera is panning with the foreground object, the background is blurred
while the foreground pixels are not. In this case, it is the inverted mask that
corresponds to the dynamic foreground object. Therefore, for our experiments,
we manually inverted the mask for all such images in the dataset of [23] where
the dynamic foreground object is sharp and the background is blurred.

We used the following empirically-determined values for the weighting con-
stants in all our experiments: α = 0.8, β1 = 100, β2 = 50 for graphcut (see page
six, last paragraph of our main paper). We used four PSFs (i.e, N = 4) from the
background to estimate ω0 (see page 10, third paragraph of our main paper).
In Section 3.2 of our main paper (page 10, third paragraph), we used a thresh-
old value of 0.5 on cross-correlation to check if the estimated PSF is consistent
with the kernel predicted by our network, and ascertain whether the pixel un-
der consideration belongs to a dynamic object. Our MATLAB implementation
of D3M takes roughly 4 minutes to classify the composite kernels and perform
segmentation on an image of size 640 × 480 pixels.


