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Abstract—Most modern consumer cameras use dual-pixel (DP) sensors that provide two sub-aperture views of the scene in a single
photo capture. The DP sensor was designed to assist the camera’s autofocus routine, which examines local disparity in the two
sub-aperture views to determine which parts of the image are out of focus. Recently, these DP views have been used for tasks beyond
autofocus, such as synthetic bokeh, reflection removal, and depth reconstruction. These recent methods treat the two DP views as
stereo image pairs and apply stereo matching algorithms to compute local disparity. However, dual-pixel disparity is not caused by view
parallax as in stereo, but instead is attributed to defocus blur that occurs in out-of-focus regions in the image. This paper proposes a
new parametric point spread function to model the defocus-disparity that occurs on DP sensors. We apply our model to the task of
depth estimation from DP data. An important feature of our model is its ability to exploit the symmetry property of the DP blur kernels at
each pixel. We leverage this symmetry property to formulate an unsupervised loss function that does not require ground truth depth.
We demonstrate our method’s effectiveness on both DSLR and smartphone DP data.

Index Terms—Defocus, disparity, dual-pixel sensor, depth estimation
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1 INTRODUCTION

DUal-pixel (DP) sensors use a unique design that splits
each pixel site in half using two photodiodes. This

split-pixel arrangement acts as a rudimentary light-field
camera and allows the sensor to capture two sub-aperture
views of the scene in a single exposure. Image regions that
are outside the optical depth of field will observe a disparity
between the two DP sub-aperture views. Camera systems
use this information to determine how to move the lens
in order to minimize the dual-pixel disparity in specific
regions of interest, and thereby bring those regions into
focus. While the DP sensor was designed for the purpose
of autofocus, many recent papers have used these two DP
views for other tasks, such as enhanced synthetic bokeh [1],
reflection removal [2], and depth reconstruction [3]. These
methods treat the DP images as stereo image pairs and
estimate disparity using stereo matching techniques.

Despite the resemblance to classic stereo, the nature of
the disparity in DP sensors has key differences from stereo
disparity. Classic stereo treats disparity as an explicit shift in
image content between the two images. This can be modeled
as a PSF with a single impulse as shown in Fig. 1. The split-
pixel arrangement in a DP sensor in conjunction with the
camera optics has the effect that light rays passing through
the right side of the lens are captured by the left half-pixels
(left sub-aperture view) and those passing through the left
side of the lens are collected by the right half-pixels (right
sub-aperture view). For an in-focus region of the scene, there
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will be no disparity between the left and right DP views.
However, for a region of the scene that is away from the
focal plane, a defocus-disparity is induced by the out-of-focus
blur being split across the two views in opposing directions
(see Fig. 1(a)). Thus, unlike in stereo, it is the difference
in the point spread functions (PSF) that produces disparity
between DP views and not an explicit shift in image content.
This is illustrated in Fig. 1(b) that shows the empirically
measured PSFs for the left and right DP views.

Contribution This paper examines the nature of defocus-
disparity in DP sensors and proposes a parameterizable PSF
to model the blur kernels based on empirical observations
of both DSLR and smartphone DP data. A useful property
of this model is that the PSF in one DP view equals the PSF
in the other DP view flipped about the axis perpendicular
to the disparity axis. Using this symmetry property, we
describe how to formulate an unsupervised loss function
for the task of depth estimation from DP data. Our unsu-
pervised loss has the advantage of using only data from
the DP sensor, and circumvents the need for ground truth
depth which is hard to acquire. Moreover, by explicitly
formulating DP disparity as a defocus kernel in line with
the image formation, our method makes judicious use of the
depth cues embedded within the defocus blur. We establish
the effectiveness of our loss function using a straightforward
optimization-based approach. We demonstrate experimen-
tally that our unsupervised optimization produces more
accurate results than classic stereo matching algorithms (see
Fig. 1(c)) and also compares favourably against state-of-the-
art monocular and stereo-based deep learning methods for
depth estimation that require supervised training. Addition-
ally, we show that considerable speed-up can be achieved by
replacing our optimization algorithm with a convolutional
neural network (CNN).
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Fig. 1. (a) Shows the two sub-aperture views (denoted as left and right) from a DP sensor. An image region is zoomed in. The dotted reference
line illustrates the disparity between the two views. (b) Shows the shifted impulse kernels for classic stereo and the empirically measured defocus
kernels corresponding to the center pixels of the left and right zoomed-in DP patches. Classic stereo matching attempts to map one image to the
other through an explicit shift in image content. This shift can be modeled as an impulse PSF. Disparity in a DP sensor, however, is the result of
defocus blurring by two different PSFs acting in opposing directions. (c) Our method, which models the disparity in a DP sensor using defocus blur
kernels, is able to estimate a more accurate depth map than algorithms based on traditional stereo matching (e.g., [1]).

Finally, we note DP data has an inherent ambiguity
in that depth can be estimated only up to an unknown
affine transformation [3]. This ambiguity is related to the
optics of a DP sensor, and is similar to the well-understood
scale ambiguity in depth from stereo (if the extrinsics are
unknown). We refer readers to [3] for a detailed discussion
on the connection between disparity and affine-transformed
depth. Following [3], in this work, we also estimate depth
up to an affine ambiguity.

2 RELATED WORK

Dual-pixel sensors were introduced as a mechanism to pro-
vide fast and accurate autofocus [4]. The autofocus system
on a DP camera exploits the defocus disparity induced
between the left and right views for a region of the scene that
is out of focus. By evaluating the signed average disparity
value within a region of interest, the autofocus routine can
determine the direction and extent by which the lens has
to be moved to minimize disparity, and thereby bring that
region into focus. Recent work has showed that DP data can
be used for additional tasks, such as synthetic bokeh [1],
reflection removal [2], and depth estimation [3]. In this
work, we address the problem of depth estimation from
DP sensor data. We briefly survey below works on depth
estimation from images.

Early work on depth estimation relied on stereo pairs [5]
or multi-view geometry [6]. These methods attempt to
constrain the solution by assuming that multiple views of
the scene of interest are available. Estimating depth from
a single image is significantly more ill-posed as the same
input image can project to multiple plausible depths. Clas-
sic monocular depth estimation methods leveraged cues
such as shading [7], contours [8], and texture [9] to infer
depth. However, these early methods could be applied only
under certain constrained scenarios. Following the seminal
monocular depth estimation work of Saxena et al. [10],
several approaches using hand-crafted features have been
proposed [11], [12], [13], [14], [15], [16], [17], [18].

The advent of deep learning saw rapid advancements
in the area of monocular depth estimation. This was made
possible mainly by end-to-end supervised training [19], [20],
[21], [22], [23] on RGBD (RGB depth) datasets. Given the
challenges in acquiring large amounts of ground truth depth
in varied real-world settings, more recent work has explored
the possibility of using synthetic depth data [24], [25], [26],
[27], [28] or using self-supervision for training [29], [30], [31],
[32], [33], [34]. The idea of self-supervision is to use stereo
pairs or video sequences, and train the model to predict
per-pixel disparities that map the input image to its nearby
view.

Depth from defocus (DFD) [35] is another technique by
which the depth of the scene can be recovered. Here, depth
is estimated from a stack of images obtained by varying
the camera’s focus [36], [37]. Levin et al. [38] showed that
replacing a conventional camera’s aperture with a coded
aperture enables depth recovery from a single image capture
by better exploiting focus cues. Our method too requires a
single image capture, and works by explicitly modeling the
relation between depth and defocus on a DP sensor using a
parameterized PSF.

Defocus blur can act as a complementary cue to disparity
for stereo matching [39]. Existing work has incorporated
defocus cues into stereo disparity estimation. Rajagopalan et
al. [40] combine DFD and stereo matching using a Markov
random field-based approach for robust depth estimation.
However, their method requires two focal stack images from
each stereo view. Bhavsar and Rajagopalan [41] generalize
this framework to couple motion, blur, and depth. Methods
for disparity estimation from a single pair of defocus stereo
images have also been proposed [42], [43]. In comparison,
the depth estimation algorithm of Paramanand and Ra-
jagopalan [44] uses a blurred-unblurred image pair. To our
knowledge, ours is the first work to explicitly model de-
focus blur for DP depth estimation. We exploit a symmetry
property of the defocus kernels that is not present in a stereo
configuration.



Depth can also be estimated using light field cameras
[45], [46]. Light field cameras sample the 4D plenoptic func-
tion [47] using standard 2D images, and in so doing sacrifice
spatial resolution for angular resolution. Due to their low
spatial resolution, these cameras have not seen widespread
consumer acceptance. A DP camera is also a rudimentary
light field. However, the loss of spatial resolution in a DP
sensor is minimal – only two angles from the light field
are sampled, while light field cameras such as Lytro Illum
sample 196 angles at the expense of considerable spatial
resolution. Given their utility, this loss of spatial resolution
is an acceptable compromise, and as such, DP sensors have
been widely adopted on consumer cameras.

Recent work [1], [3] has explored the idea of depth
estimation from DP sensor data. Wadhwa et al. [1] re-
engineered classic stereo matching to estimate the depth
map given the two DP views. The folded loss in the recently
proposed deep learning method of Garg et al. [3], while
having the advantage of being unsupervised, also models
DP disparity as a simple per-pixel shift. This can lead to
errors especially in regions far from the focal plane where
the effective defocus PSFs vary vastly between the two
views. Garg et al. [3] noted that their unsupervised loss is
inadequate for the task and therefore propose a 3D super-
vised loss that assumes that the ground truth depth map
is available during training. The requirement for ground
truth depth poses additional challenges in terms of data
acquisition, camera calibration and synchronization. Garg et
al. [3] designed a custom-made calibrated rig containing five
cameras, carefully synchronized capture, and used stereo
techniques to estimate the “ground truth” depth map from
the five views. We present an unsupervised loss function for
depth estimation from DP data that does not require ground
truth depth. Our method exploits an inherent symmetry of
DP defocus kernels.

3 DUAL-PIXEL IMAGE FORMATION AND KERNEL
SYMMETRY

In this section, we first examine the relationship between
the PSFs corresponding to the left/right DP sub-aperture
views and the image for an ideal DP sensor. Based on the
image formation model in a DP camera, we describe a useful
symmetry property of the left and right DP kernels. Next,
we conduct a set of experiments on real data captured using
DP cameras to study how the shape of the PSFs deviates in
practice from the ideal case. We validate that the symmetry
property holds equally well for real DP data.

A DP sensor splits a single pixel in half using two
photodiodes housed beneath a microlens as shown in Fig. 2.
The left and right photodiodes can detect light and record
signals independently. The pixel intensity that is produced
when these two signals are summed together is recorded as
the final image, and will match the value from a traditional
non-DP sensor. Also observe from Fig. 2 that left half-
pixels integrate light over the right half of the aperture,
and vice versa. We note that this can also be the upper
and lower halves of the aperture depending on the sensor’s
orientation. Without loss of generality, we consider them to
be the left and right views in the rest of the paper.
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Fig. 2. An illustration of the image formation on an ideal DP camera. (a)
A scene point that is at the focal plane produces no disparity – the PSF
is an impulse in the left and right DP sub-aperture views as well as the
image. (b-c) On the other hand, scene points that are away from the focal
plane induce a defocus-disparity between the left and right DP views.
For an ideal sensor and lens, the circle of confusion resulting from an
out-of-focus scene point will be split across the two views leading to half-
circle PSFs in the left and right views. The disparity is proportional to the
blur circle radius, and the sign of the disparity can be determined from
the direction of the half-circle PSFs, making it possible to disambiguate
whether the scene point is behind or in front of the focal plane.

Let us now examine in detail the image formation in an
ideal DP camera as illustrated in Fig. 2. Consider a scene
point that is at the focal plane of the lens (see Fig. 2(a)).
Light rays emanating from this point travel through the
camera lens and are focused at a single pixel. There is no
disparity and the blur kernel is an impulse in the left and
right DP views as well as the image. Next, consider the
scene points in Figs. 2(b) and (c) that are away from the
focal plane. Light rays originating from the scene point in
Fig. 2(b) that is behind the focal plane converge at a point
in front of the sensor and produce a seven-pixel wide blur
on the sensor. The circle of confusion that is induced by
this out-of-focus scene point is split over the two DP views
producing half-circle PSFs as shown. The sum of these two
PSFs is equal to the full circle of confusion observed on the
image since together, they account for all the light passing
through the aperture. In a similar manner, rays from the
scene point in Fig. 2(c) that is in front of the focal plane
also create a seven-pixel wide blur on the sensor, and the
left and right kernels are once again half-circles. While the
combined kernel corresponding to the image is exactly the
same as in Fig. 2(b), observe that the kernels corresponding
to the left and right DP views have swapped positions,
making it possible to disambiguate whether the scene point
is behind or in front of the focal plane. Thus, the disparity is
proportional to the (signed) blur circle radius. The blur circle
radius itself is a function of the diameter of the aperture, the
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Fig. 3. We estimate “ground truth” kernels corresponding to the image as well as the left and right DP views independently. Using a grid of disks
calibration pattern with known radius and spacing, we compute the sharp disk for non-blind kernel estimation. In the second and third columns,
patches corresponding to the image, and the left and right DP views are shown for two different focus settings for data captured using the Canon
EOS 5D Mark IV DSLR camera. Their associated estimated kernels are also shown in the second row. Notice that the direction of decay of the DP
kernels is reversed depending on whether the object is behind or in front of the focal plane. The last column shows left and right DP patches and
their corresponding estimated kernels for data captured using the Pixel 4 smartphone. The kernels are of size 61 × 61 pixels. The normalized 2D
cross-correlation value χ between Hl and Hf

r is close to unity, indicating that our kernel symmetry property holds true in practice.

focal length of the lens, the focus distance of the camera,
and the scene depth [3].

Consider an image patch G corresponding to a constant-
depth region in the scene. Let Gl and Gr denote its corre-
sponding left and right DP views, respectively, and F denote
the underlying sharp patch (which is usually unknown).
From the DP image formation model, we can write

Gl = F ∗Hl, (1)
Gr = F ∗Hr, (2)
G = Gl +Gr = F ∗ (Hl +Hr) = F ∗H, (3)

where ∗ denotes the convolution operation, Hl and Hr

represent the PSFs that produce Gl and Gr when convolved
with F, and H, which is the sum of Hl and Hr, represents
the combined kernel corresponding to the image G.

Fig. 2 also reveals an interesting property of the kernels
corresponding to the left and right DP views – the left kernel
equals the right kernel flipped about the vertical axis (which
is the axis perpendicular to the axis of disparity), and vice
versa. Mathematically, we can express this as Hl = Hf

r ,
where Hf

r represents the right kernel flipped about the
vertical axis. As we shall demonstrate in Section 4, this
symmetry property of the kernels plays a central role in the
construction of our unsupervised loss function.

3.1 Kernels on a real dual-pixel sensor
The half-circle kernels shown in Fig. 2 correspond to an ideal
sensor and lens. On a real sensor, due to physical constraints
in the positioning of the microlens, depth of the sensor wells,
and other manufacturing limitations, it is to be expected that
a part of the light ray bundle passing through the left half
of the lens will leak into the left-half dual pixels, and vice
versa. To investigate how the shape of the kernels deviates
from the ideal theoretical case and whether the symmetry of
the PSFs still holds, we perform the following experiment on
real data captured using DP cameras.

We capture images of calibration patterns, and then esti-
mate the “ground truth” kernels corresponding to the image

as well as the left/right DP views using a non-blind kernel
estimation technique (since the underlying sharp images are
known from the calibration patterns). Towards this goal,
following [48], we use a grid of disks with a known radius
and spacing as the calibration image (see Fig. 3(a)). The
calibration pattern is displayed on a 27-inch LED display
of resolution 1920 × 1080. Following [2], we use the Canon
EOS 5D Mark IV DSLR camera, which provides access to
the sensor’s DP data, to capture images. The monitor is
placed at a fixed distance of about one meter fronto-parallel
to the camera, and the focus distance is varied such that
the focal plane is either behind or in front of the monitor
introducing different levels of defocus blur. To avoid ra-
dial distortion effects at the periphery, we use only 20–30
disks at the center of the image for blur kernel estimation.
Patches containing these disks are identified, the center of
the disks estimated by finding the centroid of these patches,
and the disk patches averaged. We round the estimated
centroid coordinates to the nearest integer pixel value to
avoid resampling the disks during averaging. The radius of
the disks is a known fraction of the distance between disk
centers. Thus, following [48], the latent sharp disk image for
non-blind kernel estimation can be generated based on the
size of the disk grid in the captured image. To estimate the
kernel K from a sharp-blurred image pair (F,B), we solve
the following equation:

argmin
K

∑
p

||Dp(F ∗K−B)||22 + γ||K||1, (4)

subject to K ≥ 0,

where Dp ∈ {Dδ,Dx,Dy,Dxx,Dyy,Dxy} denotes the
spatial derivatives along the horizontal and vertical axes,
and γ is a positive scalar which we set to 1. The l1-norm
encourages the kernel entries to be sparse. Additionally, we
impose non-negativity constraint on the entries of K. Note
that we do not explicitly enforce that F and B have the same
average intensity, and so we do not impose the sum to unity
constraint while solving for K.



We extract the DP views from the captured data, and
estimate kernels independently for the image as well as the
left and right views. The second and third columns of Fig. 3
show patches and estimated kernels corresponding to the
image and the left and right DP views at two different
focus distances. As expected, the shape of the DP kernels
deviates from the ideal half-circles; the fall-off is gradual. To
quantatively evaluate whether the symmetry property holds
for real data, we compute normalized 2D cross-correlation χ
(which is a commonly-employed metric for kernel similar-
ity [49]) between the left kernel Hl and the flipped version
of the right kernel Hf

r . A value of χ close to one means that
the kernels are a close match. As seen from the χ values in
Fig. 3, our kernel symmetry assumption is valid even on real
data. This can be attributed to sensor imperfections likely
affecting both left and right halves in the same manner.
We computed the value of χ by varying the focus distance,
the aperture, and the focal length, and obtained consistent
results.

While DP sensors are used by most modern consumer
cameras, DP data is not accessible to users on the vast
majority of these devices. This is because after the autofocus
operation (which is one of the very early stages of the
camera pipeline), the split-pixel data is combined to produce
the image. To our knowledge, the Canon EOS 5D Mark IV
is one of the few commercially available cameras in the
DSLR segment that provide access to the sensor’s DP data.
Recently, the authors of [3] have released an Android appli-
cation that allows DP data to be read from the Pixel 3 and
Pixel 4 smartphones. We performed the same experiment as
described above using DP images captured from a Pixel 4
phone. The result is shown in the last column of Fig. 3. Due
to the small lens and sensor size, smartphone images have
notably more noise than their DSLR counterparts. Radial
distortion is also more pronounced. As a consequence, the
kernel estimates are more noisy compared to the Canon
DSLR. However, it can be observed that the symmetry of
the kernels still holds to a fair extent.

4 PROPOSED METHOD

In this section, we first introduce our optimization-based
algorithm for depth estimation from DP data. The loss to
be minimized is unsupervised, and is constructed based on
the kernel symmetry property described in Section 3. We
also show that substituting our optimization method with a
CNN offers considerable speed-up.

4.1 Unsupervised loss based on dual-pixel kernel sym-
metry

Using equations (1) and (2), and the associative and com-
mutative properties of convolution, it can be shown that
Gl ∗Hr = Gr ∗Hl (see appendix for proof). This relation-
ship [50] has been used for classic depth from defocus [51],
[52]. Here, we apply it to the case of DP defocus kernels. Us-
ing the kernel symmetry property (Hl = Hf

r defined earlier
in Section 3), this can be rewritten as Gl∗Hr = Gr∗Hf

r . For-

Fig. 4. Our parameterized translating disk kernels corresponding to the
left and right DP sub-aperture views.

mally, our unsupervised loss function can now be expressed
as

argmin
Hr

{Gl ∗Hr −Gr ∗Hf
r}, (5)

subject to Hr ≥ 0,
∑

Hr =
1

2
,

where non-negativity and sum to half constraints are im-
posed since Hr is a blur kernel corresponding to one half
of the aperture. The loss function states that the left DP
patch blurred with the right DP kernel equals the right DP
patch blurred with the flipped right DP kernel. To further
simplify the optimization, we parameterize the blur kernel
as a translating disk (see Fig. 4) such that the (signed) radius
of the disk s is the only free parameter to be estimated.
Formally, we express the parameterized blur kernel Hrs as

Hrs =

|2s|∑
i=0

{
C
(
0, 0
)
�C

(
s

|s|
i, 0

)}
, (6)

where |.| and � denote absolute value and element-wise
multiplication, respectively, and C(x, y) represents a circu-
lar disk of radius |s| centered at (x, y). We normalize Hrs to
sum to half. Equation (5) can now be rewritten as

argmin
s
{Gl ∗Hrs −Gr ∗Hf

rs}. (7)

Note that the disparity is directly proportional to the signed
blur kernel radius. The sign disambiguates whether the
depth region corresponding to the patches Gl and Gr is
in front of or behind the focal plane. As already discussed
in Section 1, from DP data, it is only possible to recover this
disparity which is related to the actual depth by an affine
transformation [3].

Our unsupervised loss of equation (7) holds only for a
constant-depth region of the scene. Therefore, given a test
image, we adopt a sliding-window approach similar to [1]
to estimate the depth map. The details of these steps are
provided in Section 4.3.

(a) Input image (b) Depth map using a 
decaying Gaussian kernel

(c) Depth map using the 
proposed kernel

Fig. 5. A comparison between a decaying Gaussian kernel and our pro-
posed translating disk kernel. Our translating disk kernel more closely
models the PSF observed on real DP data, and produces a more
accurate depth map. Note that only the image is shown; the left and
right DP views that are input to equation (7) have not been presented.



In the literature, defocus PSFs have most commonly
been parameterized using a 2D Gaussian function. We also
experimented with a decaying version of the Gaussian kernel
(see Fig. 5) to parameterize Hrs . However, we found from
our experiments that our proposed translating disk kernel
yields more accurate depth estimates. An example is shown
in Fig. 5.

4.2 CNN for faster inference
One limitation of our approach of Section 4.1 is the need to
solve an optimization problem at each pixel location. This
makes inference slow when performed over the entire im-
age. To improve the runtime performance, we can substitute
our optimization algorithm with a CNN.

To generate training data for our CNN, we imaged 12
printed postcards at different focus settings using the Canon
EOS 5D Mark IV DSLR camera. Of these, 10 postcards were
used for training, while the remaining two were used for
validation. The postcards were placed at a fixed distance
fronto-parallel to the camera, and the focus setting was
varied to introduce different levels of defocus blur. We chose
10 focus settings to image each postcard, giving us a total
of 120 images. The focus settings themselves were selected
such that an approximately equal number had the focal
plane behind and in front of the postcard plane. The left and
right DP views were extracted from all 120 images. Patches
lying in the central 66% region were cropped from both
views (to avoid radial distortion effects) to generate training
and validation data. We used patches of size 111×111 pixels.
After filtering out homogeneous patches, we generated in
total ∼ 17, 500 patches for training and another ∼ 2, 100
patches for validation.

Our network architecture is shown in Fig. 6. The network
takes the left and right DP patches, Gl and Gr , respectively,
as input, and outputs the signed radius s of the disk kernel.
The ground truth labels (i.e., the value of s) needed for train-
ing the network are generated by running our optimization
algorithm (equation (7) of Section 4.1) on the 120 images.
Note that the labels need to be generated only per image and
not per patch. This is because all patches in a given image
are at a constant depth from the camera and experience
the same amount of defocus blur since the postcards are
arranged fronto-parallel to the camera.

Similar to the optimization method of Section 4.1, we
adopt a sliding-window approach at test time to recover
the depth map of the scene. For comparison, while our
optimization approach takes approximately 20 minutes to
estimate the disparity values, our CNN takes under 10
seconds for disparity prediction on a 3-megapixel image.
Following [1], we apply bilateral space techniques as a final
processing step to ensure that the depth map is edge-aligned
with the corresponding input image. We provide details of
these steps in the next section.

4.3 Edge-aware filtering
Our kernel symmetry assumption holds only for a constant-
depth region of the scene. To obtain the depth map given
a test image, we apply a sliding-window approach similar
to [1]. The patch size, for all experiments in this paper for
both our optimization-based approach (Section 4.1) and our
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Fig. 6. Our network architecture. The network takes a six-channel input
containing the left (Gl) and right (Gr) DP patches (each comprising
three color channels) stacked together. CN : z denotes a 2D convolution
layer with z filters of size 3 × 3 and a stride of one. ReLU represents
a rectified linear unit activation layer. MP : p, q denotes a 2D max-pool
layer with a kernel size p and a stride q. There are 6 blocks of CN, ReLU,
and MP. FC : v is a fully connected layer of length v. The network outputs
the signed radius value s of the disk kernel.

CNN-based approach (Section 4.2), is fixed to 111 × 111
pixels, and the stride is set to 33. Our disparity estimates
can be noisy, particularly in homogeneous regions, or near
depth boundaries. As a result, we compute a confidence
value M for each window as:

M = S × e−βE , (8)

where S is the average of the horizontal Sobel operator
computed over the left and right DP patches, and E is
the estimation error Gl ∗ Hrs − Gr ∗ Hf

rs . We use the
horizontal Sobel operator because the disparity is along the
horizontal axis, and only vertical edges provide meaningful
information. While the Sobel value S weights down the con-
fidence in homogeneous regions, the term e−βE decreases
the confidence around depth boundaries where the error E
is expected to be high. Following [1], we use the bilateral
solver of [53] to make our estimated depth map smooth and
edge-aware. Given the confidence map, the input image,
and our estimated depth map, the bilateral solver outputs an
edge-aware depth map. We perform guided filtering [54] of
this depth map to produce our final output. We follow these
same edge-aware filtering steps for both our optimization-
based algorithm and our CNN.

5 EXPERIMENTS

To the best of our knowledge, there are no publicly available
datasets that provide dual-pixel data with corresponding
ground truth depth maps. Therefore, we captured a dataset
using a dual-pixel camera to evaluate our algorithm’s per-
formance. We perform both quantitative and qualitative
evaluation. We use the Canon camera for quantitative analy-
sis since the DSLR provides greater flexibility and control in
capturing focal stacks, which we use to obtain the ground
truth depth maps. Qualitative comparisons are performed
using data from both the Canon DSLR and the Pixel 4
smartphone.

The remainder of this section is organized as follows.
We first provide details on CNN training. Next, we discuss
comparison methods and the metrics used for evaluation.
We then describe how we capture focal stacks and generate
the ground truth depth maps for quantitative evaluation.
Lastly, qualitative results on DSLR as well as smartphone
DP data are presented.



5.1 CNN training and implementation details
We adopt He’s weight initialization [55], and use the Adam
optimizer [56] to train our model. The initial learning rate is
set to 1×10−5, which is decreased by half every 20 epochs.
We train our model with minibatches of size 10 using the
mean squared error (MSE) loss. Our network is trained
using Keras [57] with TensorFlow [58] on an NVIDIA TITAN
X GPU. Our model has approximately 176K parameters and
is trained for 100 epochs.

We used a fixed value of β = 10−6 in equation (8). The
codes for the bilateral solver [53] and the guided filter [54]
have been made publicly available by the authors. For
the bilateral solver, the hyper-parameters were chosen as
σxy = 16, σl = 16, σuv = 8, λ = 128 and 25 iterations
of preconditioned conjugate gradient (PCG) for all experi-
ments. We used r = 10 and ε = 10−6 for the guided filter.

5.2 Comparison with other methods
The work most closely related to ours is the DP depth esti-
mation method of [3]. At the time of submitting this work,
neither the dataset nor the trained model/code of [3] is
publicly available. As such, we compare our results against
the state-of-the-art deep learning-based stereoscopic and
monocular depth estimation techniques of [24], [30], [31].
The codes for these three methods have been made available
by the authors. Of these, the networks of [30], [31] are
trained through self-supervision using stereo pairs, while
the method of [24] uses ground truth depth for supervised
training. In their paper, the authors of [3] retrained methods
such as [30] that are based on stereo self-supervision on the
two DP views from their dataset. However, the dataset of [3]
is not publicly available. Moreover, our method, by virtue
of being unsupervised, does not require the collection of
a large dataset. Therefore, we report results using the best
performing models for [30], [31] without any retraining. We
also compare against the method of Wadhwa et al. [1] that
retools classic stereo techniques to recover depth from dual
pixels. Since their code is not available, we implement their
method based on the description in their paper. We use
the same parameters recommended by the authors for our
experiments on the Pixel smartphone. For DSLR images, the
disparity will be higher, and so we increase the tile size as
well as the sum of squared differences (SSD) search window
(see Section 4.1 of [1]) for optimal performance.

5.3 Error metrics
As mentioned in Section 1, dual-pixel data has a fundamen-
tal ambiguity in that depth be recovered only up to an un-
known affine transformation [3]. Thus metrics such as mean
absolute error (MAE) or root mean squared error (RMSE)
that measure error between ground truth and estimated
depth in absolute terms cannot be applied. Following [3],
we use affine invariant versions of MAE and RMSE, denoted
AI(1) and AI(2), respectively. We can define AI(p) as

argmin
a,b

(∑
(x,y) |D∗(x, y)− (aD̂(x, y) + b)|p

N

) 1
p

, (9)

where N is the total number of pixels, D̂ is the estimated
disparity, and D∗ is the ground truth inverse depth. Note

TABLE 1
Accuracy of different methods on our dataset. Lower is better. Best

results are shown in bold. The right-most column shows the geometric
mean of all the metrics.

Method AI(1) AI(2) 1− |ρs| Geometric
Mean

CVPR’17 [30] 0.1175 0.1865 0.7454 0.2488
ACM ToG’18 [1] 0.0875 0.1294 0.2910 0.1443

CVPR’18 [24] 0.1082 0.1788 0.6235 0.2250
ICCV’19 [31] 0.1139 0.1788 0.6153 0.2285

Ours (optimization) 0.0469 0.0742 0.0817 0.0646
Ours (CNN) 0.0481 0.0743 0.0779 0.0645

that [3] used a weighted variant AIWE(p) of the above equa-
tion, where the weights or confidence values are computed
based on the coherence across views in their stereo rig. Since
we compute our ground truth depth maps from focal stacks
using DFD, we do not include this weighting term in our
calculation. AI(2) can be formulated as a straightforward
least-squares problem, while AI(1) can be computed using
iterative reweighted least squares (we used five iterations
in our experiments). We also use Spearman’s rank corre-
lation ρs, which evaluates ordinal correctness between the
estimated depth and the ground truth, for evaluation. See [3]
for more details. Once again, we differ from [3] in that they
use a weighted variant of Spearman’s ρ.

5.4 Quantitative evaluation

To quantitatively evaluate our method’s performance, we
need DP data paired with ground truth depth information.
We compute “ground truth” depth maps by applying well-
established depth-from-defocus techniques on focal stacks
captured using a DP camera. Alternate approaches to ob-
taining ground truth depth include using direct depth sen-
sors, such as Kinect or LIDAR, or, as in [3], building a
custom camera rig and applying multi-view stereo meth-
ods. However, both these approaches involve cumbersome
registration and synchronization procedures – in the former
case, between the DP camera and the direct depth sensors,
and in the latter, between the central DP camera and the
other stereo cameras in the rig. In contrast, DFD techniques
can be applied directly to focal stacks captured using a
single camera, and do not require additional cameras or
sensors. One limitation of using DFD is that the scene being
imaged has to remain unchanged for the entire duration of
the capture of the stack. This precludes scenes or objects
that are dynamic. While our quantitative evaluations are
thereby limited to static scenes, we would like to note that
we perform qualitative studies on images captured under
unconstrained settings.

We captured 10 focal stacks corresponding to different
scenes. We used the Canon EOS 5D Mark IV DSLR camera,
which allows fine-grained control of the focus settings, to
capture the stacks. Each stack contains between 75 and 90
images. Objects in the scenes were placed between 0.5 m to
2 m to ensure there is interesting nearby depth variation.
To make the dataset challenging, we used printed posters
(different from the postcards used in Section 4.2 to generate
training data for the CNN) with fairly diverse and complex
textures as background, while the foreground objects were
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Fig. 7. Input images (a) from our focal stack dataset, the results of the deep learning-based methods of [30] (b), [24] (d), [31] (e), the output of
the traditional stereo algorithm of [1] (c), the results of our optimization-based approach (f) and our CNN-based approach (g), and the ground truth
(h). An affine transform has been applied to all visualizations to best fit the ground truth. The deep learning-based algorithms [24], [30], [31] do
not perform well in general. The stereo approach of [1] fares better in comparison but has many errors in the background. In contrast, both our
approaches are able to separate out the foreground objects from the background more accurately. Best seen zoomed-in in an electronic version.
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camera.



(a) Pixel 4 input images (b) CVPR’17 [30] (e) ICCV’19 [31](d) CVPR’18 [24](c) ACM ToG’18 [1] (f) Our results

Fig. 9. Qualitative results of our proposed method as well as competing algorithms on data captured using the Pixel 4 smartphone.

designed to have occlusions and clutter. Sample images are
shown in the first row of Fig. 7. To estimate the ground truth
depth maps from the focal stacks, following [59], we used
the commercially available and widely used HeliconSoft
software. We noticed that the depth map produced by Heli-
conSoft tends to have errors in large homogeneous regions.
This is a limitation of DFD methods in general since focus
operators rely primarily on texture. Therefore, we manually
annotated the depth values at these few pixels. The ground
truth depth maps obtained from the focal stacks are shown
in the last row of Fig. 7.

For quantitative evaluation, we selected 10 images at
random from each focal stack for a total of 100 images.
Although all images in the stack contain DP information, we
extract the left and right DP views only from these selected
images. For the purpose of estimating depth maps using
DFD, we treat all images as conventional RGB images. The
results of our method, as well as comparisons, on a few
representative examples from our focal stack dataset are
shown in Fig. 7. The deep learning methods of [24], [30],
[31] are given the image as input, while [1] and our method
take the left and right DP views as input. The methods
of [24], [30], [31] perform poorly and fail to distinguish the
foreground objects in most cases. The unsupervised stereo
technique of [1] also produces erroneous depth estimates
particularly in the first two examples. In comparison, our
optimization-based and CNN-based approaches generate
more accurate depth maps. Quantitative results averaged
over the 100 images in our dataset are reported in Table 1.
It can be observed that our proposed method outperforms
all competing algorithms on all three metrics. While our
optimization approach yields better performance in terms
of AI(1) and AI(2), our CNN records a slightly lower (better)
Spearman’s rank correlation.

5.5 Qualitative evaluation

Qualitative results of our proposed method as well as com-
peting algorithms on data from the Canon DSLR camera and

the Pixel 4 smartphone are provided in Figs. 8 and 9, respec-
tively. It can be seen that our proposed method produces
more accurate depth estimates than competing methods.
While our focal stack dataset was collected indoors in a
controlled environment, the examples in Fig. 8 also include
outdoor scenes captured in unconstrained settings. In the
Pixel 4, the DP data is embedded in the green channel [3]
– that is, the DP views are single-channel as against three
color channels in the case of the Canon DSLR. We do not
run our CNN method on Pixel data because our network
was trained on Canon images with a six-channel input.
In general, we found that Pixel data is more challenging,
particularly for far-away scenes. This is mainly because the
data has higher levels of noise compared to the DSLR (as
observed in Fig. 3), and the disparity is lower due to the
small aperture size. However, our method still produces
fairly good depth estimates as seen from our results in Fig. 9.
Failure cases As with almost all algorithms that use fo-
cus/defocus cues for depth inference, our method too relies
on the presence of texture. Large homogeneous regions and
textureless surfaces that do not contain useful information
for defocus estimation can lead to errors. Two failure cases
of our method are shown in Fig. 10.

6 CONCLUSION

This paper has examined the image formation in dual-
pixel sensors and proposed a parametric PSF to model the
defocus-disparity in the two sub-aperture views. Currently,
this DP sensor data can be obtained only on a limited
number of devices – namely the Canon EOS 5D Mark IV
and the Pixel 3 and 4 cameras. We have shown our model
is applicable to both DLSRs with a large aperture and
smartphone devices with a small and fixed aperture. Using
our parametric model, we described how to leverage the
symmetry property between the two corresponding PSFs
to formulate an unsupervised loss. We demonstrated the
efficacy of this loss in an optimization framework for the
task of depth estimation from DP data. Experiments show
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Fig. 10. Example failure cases of our algorithm. Homogeneous depth
planes such as the plain background walls in the two images can lead
to erroneous depth estimates.

the effectiveness of our PSF formulation of disparity. While
a CNN was introduced to speed up our inference, future
work aims to use the unsupervised loss to directly train a
CNN in an end-to-end manner.
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mers, “Deep depth from focus,” in Asian Conference on Computer
Vision, 2018.

[38] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and
depth from a conventional camera with a coded aperture,” ACM
Transactions on Graphics, vol. 26, no. 3, pp. 70:1–70:9, 2007.

[39] Y. Y. Schechner and N. Kiryati, “Depth from defocus vs. stereo:
How different really are they?” International Journal of Computer
Vision, vol. 39, pp. 141–162, 2000.

[40] A. N. Rajagopalan, S. Chaudhuri, and U. Mudenagudi, “Depth
estimation and image restoration using defocused stereo pairs,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 11, pp. 1521–1525, 2004.

[41] A. V. Bhavsar and A. N. Rajagopalan, “Towards unrestrained
depth inference with coherent occlusion filling,” International Jour-
nal of Computer Vision, vol. 97, pp. 167–190, 2011.

[42] F. Li, J. Sun, J. Wang, and J. Yu, “Dual-focus stereo imaging,”
Journal of Electronic Imaging, vol. 19, 2010.

[43] C. Chen, H. Zhou, and T. Ahonen, “Blur-aware disparity estima-
tion from defocus stereo images,” in International Conference on
Computer Vision, 2015.

[44] C. Paramanand and A. N. Rajagopalan, “Depth from motion and
optical blur with an unscented Kalman filter,” IEEE Transactions on
Image Processing, vol. 21, no. 5, pp. 2798–2811, 2012.

[45] H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. S. Kweon,
“Accurate depth map estimation from a lenslet light field camera,”
in Computer Vision and Pattern Recognition, 2015.

[46] H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. S. Kweon,
“Depth from a light field image with learning-based matching
costs,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 41, no. 2, pp. 297–310, 2019.

[47] M. Landy and J. A. Movshon, The Plenoptic Function and the
Elements of Early Vision. MITP, 1991.

[48] F. Mannan and M. S. Langer, “Blur calibration for depth from
defocus,” in Conference on Computer and Robot Vision (CRV), 2016,
pp. 281–288.

[49] Z. Hu and M.-H. Yang, “Good regions to deblur,” in European
Conference on Computer Vision, 2012.

[50] G. Harikumar and Y. Bresler, “Perfect blind restoration of images
blurred by multiple filters: theory and efficient algorithms,” IEEE
Transactions on Image Processing, vol. 8, no. 2, pp. 202–219, 1999.

[51] T. Xian and M. Subbarao, “Depth-from-defocus: Blur equalization
technique,” in SPIE: Society of Photo-Optical Instrumentation Engi-
neers, 2006.

[52] H. Tang, S. Cohen, B. Price, S. Schiller, and K. Kutulakos, “Depth
from defocus in the wild,” in Computer Vision and Pattern Recogni-
tion, 2017.

[53] J. T. Barron and B. Poole, “The fast bilateral solver,” European
Conference on Computer Vision, 2016.

[54] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6,
pp. 1397–1409, 2013.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,”
in International Conference on Computer Vision, 2015.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[57] F. Chollet et al., “Keras,” https://keras.io, 2015.

[58] M. et. al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” https://www.tensorflow.org/, 2015.

[59] A. Ito, S. Tambe, K. Mitra, A. C. Sankaranarayanan, and A. Veer-
araghavan, “Compressive epsilon photography for post-capture
control in digital imaging,” ACM Transactions on Graphics, vol. 33,
no. 4, pp. 88:1–88:12, 2014.

APPENDIX

Proof of Gl ∗Hr = Gr ∗Hl

Gl ∗Hr = (F ∗Hl) ∗Hr from equation (1)
= F ∗ (Hl ∗Hr) associative property
= F ∗ (Hr ∗Hl) commutative property
= (F ∗Hr) ∗Hl associative property
= Gr ∗Hl from equation (2)
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