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ABSTRACT The authenticity of digital images posted online and shared on social media is often questioned
due to the ability of photo-editing software to alter image content and generative AImethods that can produce
visually compelling deepfakes. Only images directly produced by cameras are deemed unaltered and beyond
suspicion, as they have not undergone any modifications. However, there is a recent trend among camera
manufacturers to integrate AI-based modules into the dedicated onboard hardware, specifically the image
signal processor (ISP), responsible for processing the captured sensor image into the final saved image
for users. Many of these AI modules utilize perceptual or generative losses during training, which can
‘‘hallucinate’’ image content. While this hallucinated content often manifests as small details and textures,
there are instances where these regions unintentionally impact the interpretation of the entire image. This
paper aims to bring attention to this issue and advocate for in-camera strategies to validate the authenticity
of camera-captured images at a pixel level. We propose the creation of an "authenticity" mask that could be
stored as additional metadata with each image. This information can be extracted and overlaid on the image
to easily identify the hallucinated regions. Considering the widespread implications of image authenticity
(e.g., in courtroom evidence, news broadcasts, and other media forms), we anticipate that authentication
metadata will become a standard practice for any ISP utilizing AI.

INDEX TERMS Authenticity, AI camera, metadata, neural ISP, generative models, adversarial loss,
perceptual loss, digital forensics.

I. INTRODUCTION AND MOTIVATION

D IGITAL image forensics is a branch of forensics that
aims to validate whether digital images are authen-

tic or fake. Traditionally, such ‘‘fakes’’ are created using
professional image editing software, such as Adobe Photo-
shop. More recently, with the proliferation of generative AI
methods, there are now tools available on the internet based
on generative adversarial networks (GAN) [12] and diffu-
sion models [13] that allow users to easily create deepfake
images. Deepfake software is becoming increasingly user-
friendly with reduced computational requirements, leading to
widespread use.

Digital image forensics has an arsenal of tools to detect
fakes, ranging from crosschecking conventional image meta-
data to analyzing image noise profiles, lens effects, compres-
sion patterns, scene lighting inconsistencies etc., to training
deep-learning models for forgery detection, and more [1],
[10], [11], [21], [24], [30]. These forensic analysis tools are
applied to images suspected of alteration via external photo-

†Work done while with the Samsung AI Center Toronto.

manipulation software or images that are born digital using
deepfake methods. In stark contrast, images saved directly
from a camera are treated as authentic representations of the
scene being imaged.

Unfortunately, the assumption that camera images are
100% authentic may no longer be valid. To understand why,
it is necessary to examine the inner workings of a camera.
A camera image starts with scene light passing through a
lens, producing a photoelectric charge at each pixel site on
the sensor. The sensor digitizes these electrical signals to
produce what is referred to as a RAW image. This RAW
image is unsuitable for viewing and must be processed be-
fore it can be displayed to the user. Cameras have dedi-
cated hardware called an image signal processor (ISP) re-
sponsible for processing the RAW image to its final photo-
finished image state. The ISP-rendered image is saved in a
display-referred color space, such as standard RGB (sRGB)
or Display-P3, suitable for viewing on monitors and mobile
devices. Typical processing steps (or blocks of steps) on an
ISP include demosaicing, noise removal, white balance, color
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FIGURE 1. (A) Traditional ISPs rely on signal processing-based routines to render the RAW sensor image to the final display-referred output of the camera.
Modern ISPs, particularly on smartphone cameras, often employ neural or AI modules that may hallucinate scene content. In this illustrative example, the
license plate of a car cannot be resolved by the camera’s optics. The first digit ‘8’ on the real license plate has been hallucinated as a ‘6’ by the ISP’s digital
zoom AI module. Such a saved image would often be considered authentic. (B) In this paper, we advocate that capture-time metadata in the form of an
authentication mask be saved with the image. The mask reveals pixels or regions in the image that may have been potentially hallucinated. When the user
queries the image post-capture for authenticity information, the mask is recovered from the metadata and overlaid on the image to visualize
non-authentic regions. In this example, the first digit ‘6’ is flagged as fake, along with regions in the sky where clouds were hallucinated by the ISP’s
AI-based exposure correction module. (The original license plate number on the input sensor image was altered to maintain privacy.)

space transformation, global and local tone mapping, expo-
sure adjustment, sharpening, rescaling (e.g., digital zoom),
and final color space encoding [4], [7]. Traditionally, such ISP
processing blocks were implemented using signal-processing
algorithms. While signal-processing algorithms alter the col-
ors and tonal qualities of the image, such methods are not
prone to generating new image content. However, an increas-
ingly common trend, particularly on smartphone cameras,
is to replace conventional processing steps with AI-based
(or neural) algorithms, owing to AI’s improved performance.
Such neural or AI modules are typically trained using per-
ceptual and generative losses. The success of many generative
methods lies in their ability to hallucinate or fake perceptually
plausible details and content.

While ‘‘fake’’ image content produced by AI-based mod-
ules is usually in the form of texture and enhanced edge
details, it is possible that the hallucinated content alters how
we interpret the real scene. Fig. 1 (A) provides an illustrative
example. In this scenario, the camera cannot optically resolve
a car’s license plate. Digital zoom applied by the ISP using
a conventional signal-processing-based algorithm produces
a less noisy but blurry license plate. However, an AI-based
digital zoom module trained with generative losses, such as a
GAN, can hallucinate sharp, visually plausible content. In this
example, the AI-based zoom hallucinates the first digit as ‘6’
unintentionally instead of the true value ‘8’. While seemingly
innocuous, this image directly outputted by a camera could
potentially be used as evidence against the car’s owner of the
hallucinated license plate.

On the surface, it would appear that the solution is to rely
only on RAW images as authentic. Most modern cameras
allow users to save RAW images encoded in formats such
as Adobe’s Digital Negative (DNG). RAW images arguably
have much less processing than rendered display-referred
images. However, many smartphones do not capture a single
RAW image but instead capture a burst of RAW images, even
in single photo mode. The RAW burst sequence is aligned
andmerged to produce a single composite RAW image. Com-
posite RAW images are desirable because they tend to have

better noise profiles and higher tonal range than possible with
a single image. If the burst alignment and fusion module uses
generative AI-based algorithms, there may be hallucinated
content even in the composite RAW image.
As camera manufacturers replace conventional signal-

processing components of the ISP with AI modules to im-
prove image quality, there is a need to be mindful of the
implications this has for image authenticity. This paper aims
to shed light on this problem and suggest potential strate-
gies to mitigate this issue via authentication metadata. Fig.1
(B) illustrates how the authentication mask will be saved as
metadata and displayed to the user. We describe strategies for
constructing pixel-level authentication masks in two common
scenarios. In the first scenario, an AI module capable of
image hallucination is used in a black-box manner with no
ability to modify the underlying module. In this use case,
a method to detect fake pixels is required. The second sce-
nario is when a camera manufacturer is designing the AI
module. For this situation, we suggest a training regime that
separates the generative loss component of the AI module to
readily identify hallucinated pixels. Finally, we outline how
the authentication mask can be designed and incorporated as
metadata. Given the proprietary nature of ISP design among
different manufacturers and the rapid advancements in AI-
based algorithms, the strategies described in this paper only
serve as a guide. Our main contribution is to elucidate the
problem of hallucinated image content within a camera ISP
and encourage the development of pixel-level authentication
masks.

II. RELATED WORK
Before outlining methods to produce an authentication mask,
we briefly review various ISP architectures and modules, as
well as common neural training regimes and loss functions.
Fig. 2 shows different possible ISP architectures and the

common modules or blocks inside an ISP. A traditional
signal-processing-based ISP has a number of processing
blocks, as shown in (A), with the operations being applied
in sequence. The ISP can broadly be divided into a Bayer
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FIGURE 2. Examples of modern ISP architectures. (A) A traditional signal-processing-based ISP. (B) An AI ISP where a single monolithic neural block
replaces the ISP in (A). (C) An AI ISP with two neural blocks for front- and back-end processing. (D) A modular AI ISP with multiple blocks. (E) A hybrid ISP
with some signal-processing blocks replaced with neural units.

front end and a photofinishing back end. One possible AI ISP
architecture is to replace the entire signal-processing-based
ISP with a single neural unit trained end-to-end, as shown in
(B). Often, a two-stage AI ISP, as in (C), with a front and back
end, is preferred over the monolithic structure in (B). More
modular architectures, such as in (D), are also possible since
they offer more fine-grained control and better interpretabil-
ity. Note that the number of blocks and their connections are
a design choice—other configurations are also possible. The
most common case is depicted in (E), where one or more
blocks of a conventional signal-processing-based ISP may be
replaced with neural units.

Neural networks may be trained using standard reconstruc-
tion losses such as mean squared error (MSE) or mean abso-
lute error (MAE). Perceptual losses such as VGG loss [20] or
Learned Perceptual Image Patch Similarity (LPIPS) [31] are
also common. Perceptual losses target image enhancement
(rather than reconstruction) and are prone to hallucinate de-
tails or image content that is visually plausible and pleasing.
Using generative loss functions can also lead to hallucinated
content. GAN-based methods trained using an adversarial
loss function are a common example of this category. It is
important to distinguish that while the outputs of networks
trained using only reconstruction losses such as MSE and
MAE may contain visual artifacts, these artifacts differ from
those created by perceptual losses. In practice, a reconstruc-

tion loss is used to recover an underlying signal that has be-
come corrupted or distorted. Perceptual and adversarial losses
aim to improve the perceptual quality of the result, regardless
of the underlying signal. This decoupling from the underlying
signal encourages the generation (i.e., hallucination) of detail
and texture. As described in [3], these two losses are at odds.
Typically, both losses are used when training a deep learning
module, and balancing between the two criteria is at the
discretion of the algorithm designers.
Replacing the conventional signal-processing ISP with a

neural one has been a topic of significant interest in the
past few years, with many ideas being explored in terms
of architecture and loss functions and several competitions
being organized yearly [8], [15]–[18], [26]. With the growing
emphasis on improving smartphone image quality, the first
RAW-to-sRGB challenges in [16], [18] aimed to process low-
quality RAW images from a smartphone camera to look like
high-quality rendered images from a DSLR camera. A large
dataset of paired RAW-sRGB images [19] captured using a
smartphone camera and a DSLR, respectively, was provided
as part of the challenge. All methods used a monolithic archi-
tecture as in Fig. 2 (B). In addition to reconstruction losses,
most works also used perceptual losses, while some also con-
sidered adversarial and style losses. Alongside image quality,
runtime performance is also a crucial consideration on smart-
phone devices. Therefore, subsequent challenges [15], [17]
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FIGURE 3. An example showing how the binary authentication mask is computed and propagated at each stage of the ISP. The ISP is a hybrid ISP with a
combination of signal processing-based and neural blocks. The neural blocks trained with perceptual and/or generative losses may introduce fake
content, as indicated by the binary masks. Neither the signal processing-based block nor the neural block trained with pure reconstruction losses
hallucinates details. The mask is carried forward at these stages. The final mask is saved as metadata.

placed more stringent constraints on on-device performance
while providing a unified platform to evaluate proposed mod-
els on the target device. Similar trends were observed in these
works regarding loss functions and a monolithic architecture,
but notably, most methods could obtain close to real-time
performance on the device.Works such as [6], [27], while still
following a monolithic architecture, used additional metadata
information such as ISO gain values and white-balance as
input, similar to a conventional ISP.

A two-stage ISP with a Bayer processing front end and
a photo-finishing back end similar to the structure in Fig. 2
(C) was proposed in [22]. The two networks, Restore-Net
and Enhance-Net, were first trained separately using anMAE
reconstruction loss and later jointly finetuned using a com-
bination of MAE and perceptual losses. Recently, the more
complex task of processing RAW images of nighttime scenes
to sRGB was considered in the night photography rendering
challenge [8], [26]. Due to the unique lighting environment
in nighttime scenes, white balance, tone curves, and photo-
finishing strategies vary significantly for nighttime rendering
compared to daytime photography. Many methods adopted a
more modular structure, similar to Fig. 2 (D). In particular,
the winner of the challenge in [8], DeepFlexISP [23], used
a three-stage network structure breaking down the full ISP
into a denoising network, a white-balance network, and a
Bayer-to-sRGB network. There were also user-controllable
parameters for denoising strength, color cast, and overall
brightness. Notably, many of the solutions proposed in [8],
[26] used perceptual or adversarial loss functions for training.
This widespread adoption of neural ISP modules raises the
need for pixel-level authentication.

III. CREATING PIXEL-LEVEL AUTHENTICATION
METADATA
In this section, we outline a framework for computing and
propagating the authentication mask through the various
stages of the ISP. As mentioned in Sec. I, there are two com-
mon scenarios faced by camera engineers. The first is when
an AI-based ISP component is used in a black-box fashion.
This arises when a third-party pre-trained solution is used
or when an internally developed module cannot be altered
(often due to lack of time). The second scenario is when
camera engineers have control over an AI-module’s design
and training. For these two scenarios, we describe methods to
detect hallucinated pixels to generate the authenticationmask.
Finally, we discuss how themetadata and the processed image
can be efficiently and securely saved.

Input Output Transformed input Authenticity mask overlay

Authentic

Fake

FIGURE 4. An example of a black-box neural ISP module used for
exposure correction. The input and output of the module are shown in
the first two columns. The third column shows the input transformed to
the output using a global mapping function. Binarizing the difference
between the transformed input and the output yields the authentication
mask, shown overlaid on the output, in the fourth column. Cloud-like
details hallucinated by the exposure adjustment module are flagged as
fake in the authenticity mask.

We start by providing a high-level diagram of how an
authentication mask is computed at different stages of the
ISP in Fig. 3. In this example, the camera ISP is a hybrid
ISP containing three neural blocks and one signal-processing-
based block. A hybrid ISP mixing signal-processing and
neural-processing components is currently the most common
architecture used on devices. In this example, the first block
is a Bayer front-end neural unit that inputs a single-channel
Bayer-RAW image and outputs a denoised and demosaiced
three-channel RAW-RGB image. The Bayer-front-end unit is
a GAN-based network that hallucinates content around the
edges of the building windows during demosaicing. These
pixels are flagged as hallucinated (magenta color) in the
binary mask. The second block is a colorimetric neural unit
that takes the RAW-RGB image as input and applies white
balance and color space transforms. This unit is trained using
only reconstruction losses and does not introduce any fake
content. As a result, the mask is carried forward from the
previous stage. The third block is a photo-enhancement neural
unit trained using a combination of perceptual and generative
losses, and it hallucinates sky and building texture (white-
colored regions in the binary mask) where there is under-
/over-exposed content. The mask is now the union of the pre-
vious and the current stage (magenta + white). The final block
is an output-referred unit, a conventional signal processing
block that performs some sharpening and compression. The
mask is carried forward to the final stage and saved as meta-
data.
For more granular annotation of which unit(s) of the ISP

generated fake content, it is possible to store an n-bit mask,
instead of a binary mask. In the example of Fig. 3, one
could use a 4-bit mask since there are four ISP blocks. Each
binary bitplane reveals the hallucinated pixels produced by
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FIGURE 5. When the neural ISP modules are trainable, it is possible to adapt the training framework to automatically and accurately segment authentic
and fake pixels. Two possible strategies are shown: (A) demonstrates an approach where we finetune the reconstruction model with
perceptual/generative losses to obtain the final prediction. (B) demonstrates an approach where we cascade the reconstruction model and perceptual
loss model to obtain the final prediction. In both cases, the authenticity mask is a natural outcome of the training process and does not need to be
separately estimated.

the corresponding ISP module. However, note that this comes
at the expense of larger metadata size.

A. BLACK-BOX NEURAL ISP MODULE
When working with a black-box neural module, we must
determine which parts of the image have been hallucinated
by examining only the input and output. One approach to
this problem is to compute a global mapping between the
input and output of the AI module. For example, we can fit a
polynomial mapping (either globally or with smooth spatial
interpolation) between the input and output RGB values. Such
mappings have been successfully used to model color trans-
forms between input/output pairs [14], [25]. This polynomial
function is regressed using a reconstruction loss (e.g.,MAEor
MSE). The smooth nature of the polynomial mapping and the
use of a reconstruction loss make it difficult for the estimated
transform to model the hallucinated content. If we apply this
smooth mapping to the input image and compare this with
the output of the AI module, we can use simple thresholding
operations to detect where hallucinated detail is in the AI
module’s output image. Different transformation functions
can be used depending on the ISP stage and the complexity
of the mapping required. This is a simple approach and has
the benefit of minimal added overhead of mask generation.

Fig. 4 shows an example of the task of exposure adjust-
ment. We selected the GAN-based exposure correction ap-
proach of [9] for this experiment. We used the pre-trained
model released by the authors 1. The input image in the first
column is taken from the MIT-Adobe FiveK dataset [5]. The
image has a lot of saturated pixels, particularly in the sky
region. The second column shows the output of [9]. Using
a GAN loss for this module results in cloud-like details being
hallucinated where there were originally only saturated pixels
(i.e., no information). We fit a global polynomial mapping
function [14] to transform the input into the output. The
transformed input image, after the mapping function is ap-
plied, is shown in the third column. We compute the absolute
difference between the transformed input and the output and
threshold the result to obtain the binary authenticity mask.

1https://github.com/yamand16/ExposureCorrection

We show the mask overlaid on the output image in the last
column. Image details in the sky region hallucinated by the
GAN are flagged as non-authentic regions in the binary mask.

B. TRAINABLE NEURAL ISP MODULE
In scenarios where the cameramanufacturer has the flexibility
to modify the AI module’s design and training method, we
propose an approach that trains two networks, one focused
on reconstruction only and one focused on perceptual and/or
generative losses. Training requires a two-step procedure as
shown in Fig. 5 (A). In the first step, we train a deep neural
network, denoted as DNN1, using a standard reconstruction
loss between the network’s output and the ground truth.
Once training has converged, we save the weights of this
reconstruction-only model. As the second training step, we
finetune the same network using perceptual and/or generative
losses. In the case of adversarial training, an additional dis-
criminator network can be added during this step. At test time,
the output of the finetunedmodel DNN1′ is the desired output
image, while the difference image between the output of the
finetuned model and the output of the reconstruction-only
model reveals the hallucinated content. Our authentication
mask can be directly obtained by binarizing the difference
image with an appropriate threshold. Optionally, simple mor-
phological operations can also be applied to the binary mask
to remove spurious noise.
Fig. 6 shows an example of this strategy for the super-

resolution task. For this experiment, we chose the Real-
ESRGAN method [28]. We used the official implementation
from the authors 2. The input image is from the DIV2K
dataset [2]. We selected a super-resolution factor of ×4. The
input and the ground truth are shown in the first row. We
first train the model of [28] using a pure reconstruction loss.
The result of this model is shown on the bottom left. Next,
we finetune the model with an adversarial loss. This is the
final output and is shown on the bottom right. The authen-
ticity mask is obtained by binarizing the difference between
this final output and the output of the reconstruction-only
model. After the model is finetuned using a GAN loss, the

2https://github.com/xinntao/Real-ESRGAN
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FIGURE 6. An example of a trainable neural ISP module for
super-resolution implemented by finetuning the reconstruction model
with perceptual/generative losses. The input and the ground truth are
shown in the top row. The bottom left image shows the output of a model
trained using a pure reconstruction loss. This model is then finetuned
using an adversarial loss, and the final output of the GAN model is shown
on the bottom right. Alongside the zoomed-in regions, our authenticity
mask is also shown for the GAN model’s output. Hallucinated pixels are
accurately detected and flagged in the authentication mask.

final output is sharper and has more detail than the output
of the reconstruction model. However, from the zoomed-in
regions, it can be observed that the GAN model is prone to
hallucinations – the Korean Hangul character호 is changed to
what could be interpreted as either오 or모 (indicated by the
red arrow), and the digits 9 and 6 appear as 0. Our authenticity
mask correctly highlights these hallucinated regions.

We also envision a variation of our two-step training ap-
proach (shown in Fig. 5 (B)) where in the first step, we train
a neural network DNN1 using a standard reconstruction loss,
as performed first. Once this network is trained, we freeze the
weights of DNN1, and proceed to the second step. Here, we
introduce a second network, DNN2, which receives the output
of DNN1 as input. DNN2 predicts a residual image that is
added to its input to produce the final image. DNN2 is trained
using perceptual and/or generative losses. The residual image
output by DNN2 represents the hallucinated content. The
advantage of training the two networks, DNN1 and DNN2,
in this manner is that it once again directly decouples the fake
pixels from the authentic pixels—at test time, pixel locations
with a value of 1 in DNN2’s residual output after binarization
represent fake content. Optionally, a sparsity constraint can
be imposed on DNN2’s residual output during training since,
in most cases, only a small percentage of pixels will be non-
authentic. As before, for adversarial training, an additional
discriminator network can be added to the second training
step such that DNN2 is encouraged to produce a residual,
which, when added to DNN1’s output, is effective at fooling
the discriminator.

Fig. 7 shows an example of this second approach once
again for the task of super-resolution. We use the Real-
ESRGANmethod [28] as before. The input image is from the
CCPD dataset [29]. The super-resolution factor is ×4. The

GAN modelReconstruction modelGround truthInput

FIGURE 7. An example of a trainable neural ISP module for
super-resolution implemented by cascading the reconstruction model and
the perceptual/generative loss model. The input and the ground truth are
shown in the first two columns. The third column shows the output of a
first network trained using a pure reconstruction loss. A GAN-based
second network predicts a residual image that is added to the
reconstruction network’s output, and this final result is shown in the
fourth column. Alongside the zoomed-in region, our authenticity mask is
also shown for the final output. Hallucinated pixels are accurately
detected and flagged in the authentication mask. Note that the number
plate has been grayed out to maintain privacy.

input, the ground truth, and the result of the first network
DNN1 trained using a pure reconstruction loss are shown
in the first three columns, respectively. The second network
DNN2, trained using an adversarial loss, predicts a residual
image that is then added to the output of DNN1. This final
output is shown in the last column. The authenticity mask is
directly obtained by binarizing DNN2’s residual output. As
shown in the zoomed-in region, the Chinese character 皖 is
changed to what could be interpreted as铃 in the final result.
Our authenticity mask correctly highlights this hallucinated
character.

C. SAVING THE AUTHENTICATION METADATA
To reduce the metadata size, the binary mask can be down-
sampled and compressed. For example, a standard sized 12-
mega-pixel image (i.e., 3000×4000) will require around 2 to 4
MB of storage after lossy compression using JPEG or HEIC.
In comparison, a binary mask at full resolution compressed
using a lossless binary image compression algorithm will be
around 150 to 300 KB, depending on the sparsity of the mask.
If the binary mask is downsampled to half the resolution
1500×2000 pixels, the file size further reduces to around 64
KB to 96 KB, representing a nominal overhead of 2 to 3%.
It is also important to prevent tampering with the mask

itself. While securing information within a digital document
is its own research topic, we envision methods for storing the
authentication mask based on manufacturer encryption and
steganography.

IV. CONCLUDING REMARK
This paper sheds light on a concern surrounding the authen-
ticity of images directly outputted by cameras. Traditionally,
camera images have been considered reliable, as they are
assumed to be unaltered at the point of capture. However,
a new challenge has emerged with the integration of AI-
based algorithms into the ISPs of modern cameras. These AI
modules, often trained using perceptual or generative losses,
can potentially introduce unintended alterations in the form
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of ‘‘hallucinated’’ content within images. Consequently, the
authenticity of images captured by cameras is not guaranteed,
a critical aspect often overlooked in modern digital image
forensics.

This paper has advocated for the implementation of strate-
gies within the camera’s ISP to enable the validation of image
authenticity at a pixel level. Specifically, we have proposed
the inclusion of capture-time metadata in all outputted im-
ages. This metadata serves as a spatial mask that can iden-
tify pixels potentially affected by AI-driven hallucination,
allowing users to visualize and assess the authenticity of an
image at a pixel level. Due to the wide-ranging implications of
image authenticity, we envision the adoption of authentication
metadata as a standard practice for any ISP incorporating AI.
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